

AUTOMOTIVE CURRENT TRANSDUCER HAB 120-V/SP5

Introduction

The HABxxx-V Family is for the electronic measurement of DC, AC or pulsed currents in high power automotive applications with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HABxxx–V family gives you the choice of having different current measuring ranges in the same housing (from \pm 20 A up to \pm 120 A).

Features

- Open Loop transducer using the Hall effect
- Unipolar +5 V DC power supply
- Primary current measuring range up to ±120 A
- Maximum RMS primary current limited by the busbar, the magnetic core or the ASIC temperature T < +150°C
- Operating temperature range: -40°C < *T* < +125°C
- Output voltage: full ratiometric (in sensitivity and offset)
- Compact design.

Special features

• HAB 120-V/SP5 replace the HAB 120-V (obsolete) and improve performance with LEM8 ASIC

Advantages

- Excellent accuracy
- Very good linearity
- Very low thermal offset drift
- Very low thermal sensitivity drift
- Wide frequency bandwidth
- No insertion losses.

Automotive applications

- Battery monitoring
- Starter Generators
- Inverters
- HEV application
- EV applications.

Principle of HABxxx-V Family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density B, contributing to the rise of the Hall

voltage, is generated by the primary current $I_{\rm P}$ to be measured.

The current to be measured $I_{\rm P}$ is supplied by a current source i.e. battery or generator (Figure 1).

Within the linear region of the hysteresis cycle, *B* is proportional to:

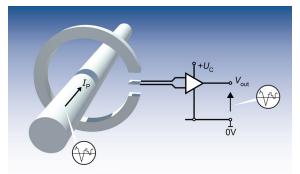
 $B(I_{\rm P}) = a \times I_{\rm P}$ The Hall voltage is thus expressed by:

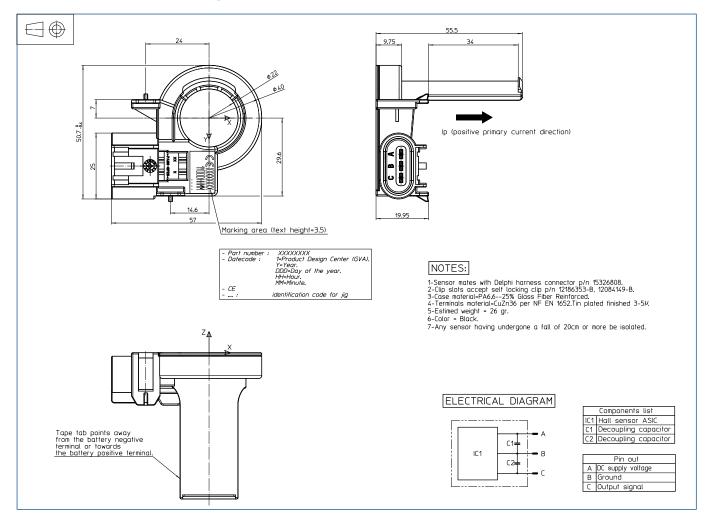
$$V_{\rm H} = (c_{\rm H}/d) \times I_{\rm H} \times a \times I_{\rm P}$$

Except for $I_{\rm P}$ all terms of this equation are constant. Therefore:

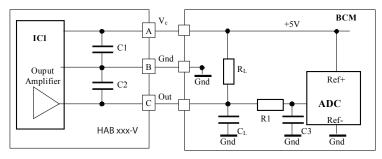
$V_{\rm H} = b$	×I _P
a	constant
b	constant
C _H	Hall coefficient
d	thickness of the Hall plate
$I_{\rm H}$	current across the Hall plates

The measurement signal $V_{\rm H}$ amplified to supply the user output voltage or current.




Fig. 1: Principle of the open loop transducer.

N° 52.39.36.105.0


Page 1/5

Dimensions HABxxx-V family (in mm.)

System artitecture

HAB120-V/SP5 components						
IC1	Hall sensor ASIC					
C1	Capacitor					
C2	Capacitor					

BCM components							
R _L	Load Resistor						
CL	Load Capacitor						
R1	Optional High impedance protection						
C3	Optional Filtering Capacitor						

Absolute maximum ratings (not operating)

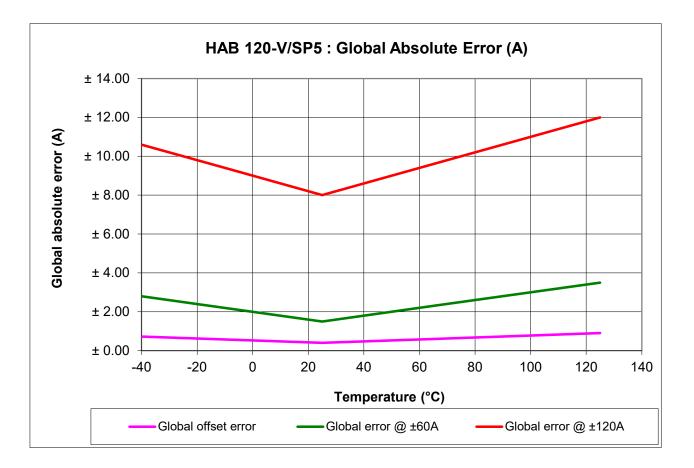
2	Symbol	Unit	Specification						
Parameter			Min	Typical	Max	Conditions			
	Electrical Data								
Supply continuous over voltage					8.5				
Supply over voltage	U _c	V			14	1 min			
Reverse voltage			-14			1 min @ T _A = 25°C			
Output over voltage (continuous)	V _{out}	V			8.5				
Output over voltage					14	1 min @ T _A = 25°C			
Output current (continuous)	I _{out}	mA	-10		10				
Output short-circuit duration	Tc	min			2				
Rms voltage isolation test	V _d	kV			2	IEC 60664-1			
Electrostatic discharge voltage	$V_{\rm esd}$	kV			2	IEC 61000-4-2			
Ambiant storage temperature	Ts	°C	- 40		125				

Operating characteristic

Paramatar	Symbol	Unit	Specification			Conditions		
Parameter	Symbol		Min	Typical	Max	Conditions		
Electrical Data								
Primary current	I _P	А	-120		120			
Calibration current	I _{CAL}		-60		60	@ T _A = 25 °C		
Supply voltage	Uc	V	4.5	5.00	5.5			
Output voltage ¹⁾	V _{out}	V	$V_{\rm OUT} = \zeta$	U _c /5 X (2.5 · I _P)	+0.017 X	@ U _c		
Sensitivity 1)	G	mV/A		17.00		@ U _c = 5 V		
Current consumption	I	m۸		7	10	@ $U_{\rm C}$ = 5 V, – 40 °C < $T_{\rm A}$ < 125 °C		
Power up inrush current ²⁾	I _c	mA			15	@ U _c < 3.5 V		
Load resistance	RL	kΩ	10					
Ouput internal resistance	R _{OUT}	Ω			10			
Capacitive loading	C_	nF	1		100			
Ambiant operating temperature	T _A	°C	- 40		125			
Output drift versus power supply		%		0.5				
Frequency bandwidth ²⁾	BW	Hz		80		@ -3 dB		
Output clamping voltage min			0.2	0.25	0.3	@ U _c = 5 V		
Output clamping voltage max	V _{sz}	V	4.7	4.75	4.8	@ U _c = 5 V		
Peak-to-peak noise voltage	$V_{\rm no \; pp}$	mV			10			
Resolution		mV		2.5		@ U _c = 5 V		
Start-up time	t _s	ms		25	110			
Setting time after over load		ms			25			

<u>Notes</u>: ¹⁾ The output voltage V_{out} is fully ratiometric. The offset and sensitivity are dependent on the supply voltage V_{c} relative to the following formula; ²⁾ During the power up phase.

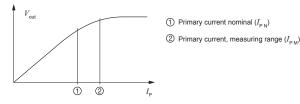
$$I_{\rm P} = \left(\frac{5}{U_{\rm C}} \times V_{\rm out} - V_{\rm O}\right) \times \frac{1}{G} \text{ with } G \text{ in (V/A)}$$



Accuracy

Parameter	Symbol	Unit	Specification			Conditions		
Farameter	Symbol		Min	Тур	Max	Conditions		
Electrical Data								
Electrical offset current	I _{oe}			±0.20		@ $T_{\rm A}$ = 25 °C, @ $V_{\rm C}$ = 5 V		
Magnetic offset current	I _{om}			±0.05		@ $T_{\rm A}$ = 25 °C, @ $V_{\rm C}$ = 5 V, after ± $I_{\rm P}$		
		A	-0.4		0.4	@ $T_{\rm A}$ = 25 °C, @ $V_{\rm C}$ = 5 V		
Global offset current	Ι _ο		-0.6		0.6	@ $U_{\rm C}$ = 5 V, -10 °C < $T_{\rm A}$ < 65 °C		
			-0.9		0.9	@ $U_{\rm C}$ = 5 V, -40 °C < $T_{\rm A}$ < 125 °C		
	€ _G	%		±0.3		@ $T_{A} = 25 \text{ °C}$, $I_{P} = \pm 60 \text{ A}$		
Sensitivity error				±1.0		@ $-10^{\circ}C < T < 65^{\circ}C, I_{P} = \pm 60 \text{ A}$		
				±2.0		@ $-40^{\circ}C < T < 125^{\circ}C, I_{P} = \pm 60 \text{ A}$		
Linearity error up to 60A				±0.2				
Linearity error up to 80A	ÊL	%		±1.0		of full range		
Linearity error up to 120A				±2.5				

Global Absolute Error (A)


	Global Absolute Error (A)								
Temperature	−40 °C	−10 °C	25 °C	65 °C	125 °C				
Global Offset Error	±0.73	±0.58	±0.40	±0.60	±0.90				
Global Error @ ±60A	±2.80	±2.20	±1.50	±2.30	±3.50				
Global Error @ ±120A	±10.60	±9.40	±8.00	±9.60	±12.00				

PERFORMANCES PARAMETERS DEFINITIONS

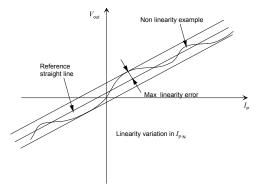
Primary current definition:

Definition of typical, minimum and maximum values:

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as values shown in "typical" graphs. On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval. Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %. For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution. Typical, minimum and maximum values are determined during the initial characterization of a product.

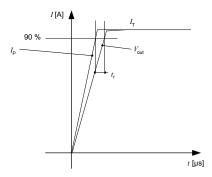
Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier.


Magnetic offset:

The magnetic offset is the consequence of an any current on the primary side. It's defined after a stated excursion of primary current.

Linearity:


The maximum positive or negative discrepancy with a reference

straight line $V_{out} = f(I_p)$. Unit: linearity (%) expressed with full scale of $I_{p,N}$.

Response time (delay time) t_r:

The time between the primary current signal ($I_{\rm P\ N})$ and the output signal reach at 90 % of its final value.

Sensitivity:

The transducer's sensitivity *G* is the slope of the straight line $V_{\text{ext}} = f(I_p)$, it must establish the relation:

$$f(\mathbf{r}_{p}), \mathbf{r}_{p}$$

 $V_{\rm out} (I_{\rm P}) = U_{\rm C}/5 (G \times I_{\rm P} + V_{\rm O})$

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 $^{\circ}$ C.

The offset variation I_{OT} is a maximum variation the offset in the temperature range:

$$I_{OT} = I_{OE} \max - I_{OE} \min$$

The offset drift $TCI_{\rm O~E~AV}$ is the $I_{\rm O~T}$ value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 $^{\circ}$ C.

The sensitivity variation G_{τ} is the maximum variation (in ppm or %) of the sensitivity in the temperature range: G_{τ} = (Sensitivity max – Sensitivity min) / Sensitivity at 25 °C. The sensitivity drift *TCG*_{AV} is the G_{τ} value divided by the temperature range. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Offset voltage @ $I_p = 0$ A:

The offset voltage is the output voltage when the primary current is zero. The ideal value of $V_{\rm o}$ is $U_{\rm c}/2$. So, the difference of $V_{\rm o} - U_{\rm c}/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem. com).

Environmental test specifications:

Refer to LEM GROUP test plan laboratory CO.11.11.515.0 with "Tracking_Test Plan_Auto" sheet.