Kaimeite Electronic (HK) Co., Limited
First choice One-Stop Mixed Distributor for World-Class manufacturer Email: info@kaimte.com Website: www.kaimte.com

Click to view price, real time Inventory, Delivery & Lifecycle Information;

SN74LVC2T45DCUR

TI, Texas Instruments

Translation - Voltage Levels Dual-Bit Dual Supply Transceiver

Any questions, please feel free to contact us. info@kaimte.com

SN74LVC2T45

SCES516K - DECEMBER 2003-REVISED JUNE 2017

SN74LVC2T45 Dual-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation

1 Features

- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.65-V to 5.5-V Power-Supply Range
- V_{CC} Isolation Feature If Either V_{CC} Input Is at GND, Both Ports Are in the High-Impedance State
- DIR Input Circuit Referenced to V_{CCA}
- Low Power Consumption, 4-μA Max I_{CC}
- Available in the Texas Instruments NanoFree[™] Package
- ±24-mA Output Drive at 3.3 V
- I_{off} Supports Partial-Power-Down Mode Operation
- · Max Data Rates
 - 420 Mbps (3.3-V to 5-V Translation)
 - 210 Mbps (Translate to 3.3 V)
 - 140 Mbps (Translate to 2.5 V)
 - 75 Mbps (Translate to 1.8 V)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 4000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

2 Applications

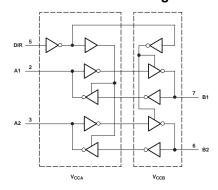
- Personal Electronic
- Industrial
- Enterprise
- Telecom

3 Description

This dual-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track V_{CCA} . V_{CCA} accepts any supply voltage from 1.65 V to 5.5 V. The B port is designed to track V_{CCB} . V_{CCB} accepts any supply voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.

The SN74LVC2T45 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input activate either the B-port outputs or the A-port outputs. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess $I_{\rm CC}$ and $I_{\rm CCZ}$.

The SN74LVC2T45 is designed so that the DIR input circuit is supplied by V_{CCA} . This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.


The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, both ports are in the high-impedance state. NanoFreeTM package technology is a major breakthrough in IC packaging concepts, using the die as the package.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74LVC2T45DCT	SM8 (8)	2.95 mm x 2.80 mm
SN74LVC2T45DCU	VSSOP (8)	2.30 mm x 2.00 mm
SN74LVC2T45YZP	DSBGA (8)	1.89 mm x 0.89 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Functional Block Diagram

Ta	hl	Δ	Λf	Co	nte	nte
		_				

1	Features 1		8.2 Functional Block Diagram	13
2	Applications 1		8.3 Feature Description	13
3	Description 1		8.4 Device Functional Modes	13
4	Revision History2	9	Application and Implementation	14
5	Pin Configuration and Functions 3		9.1 Application Information	
6	Specifications4		9.2 Typical Applications	14
•	6.1 Absolute Maximum Ratings 4	10	Power Supply Recommendations	17
	6.2 ESD Ratings		10.1 Power-Up Considerations	17
	6.3 Recommended Operating Conditions	11	Layout	17
	6.4 Thermal Information5		11.1 Layout Guidelines	17
	6.5 Electrical Characteristics 6		11.2 Layout Example	18
	6.6 Switching Characteristics: V _{CCA} = 1.8 V ± 0.15 V 6	12	Device and Documentation Support	19
	6.7 Switching Characteristics: $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$		12.1 Documentation Support	19
	6.8 Switching Characteristics: V _{CCA} = 3.3 V ± 0.3 V 7		12.2 Receiving Notification of Documentation Updates	19
	6.9 Switching Characteristics: V _{CCA} = 5 V ± 0.5 V 8		12.3 Community Resources	19
	6.10 Operating Characteristics8		12.4 Trademarks	19
	6.11 Typical Characteristics9		12.5 Electrostatic Discharge Caution	19
7	Parameter Measurement Information		12.6 Glossary	19
8	Detailed Description	13	Mechanical, Packaging, and Orderable	4.0
	8.1 Overview		Information	18

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

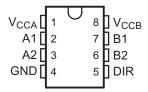
01		
• Cha	anged data sheet title	1
• Add	ded Junction temperature, T _J in <i>Absolute Maximum Ratings</i>	4
• Add	ded Documentation Support, Receiving Notification of Documentation Updates and Community Resources	19

Changes from Revision I (March 2007) to Revision J

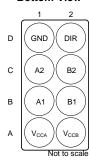
Page

Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device

Product Folder Links: SN74LVC2T45


Submit Documentation Feedback

Copyright © 2003–2017, Texas Instruments Incorporated



5 Pin Configuration and Functions

DCT or DCU Package 8-Pin SM8 or VSSOP Top View

YZP Package 8-Pin DSGBA Bottom View

Pin Functions: DCT, DCU

PIN		TVDE	DESCRIPTION			
NO.	NAME	TYPE	DESCRIPTION			
1	V _{CCA}	Р	A-port supply voltage. 1.65 V ≤ V _{CCA} ≤ 5.5 V			
2	A1	I/O	Input/output A1. Referenced to V _{CCA}			
3	A2	I/O	Input/output A2. Referenced to V _{CCA}			
4	GND	G	Ground			
5	DIR	I	Direction control signal			
6	B2	I/O	Input/output B2. Referenced to V _{CCB}			
7	B1	I/O	Input/output B1. Referenced to V _{CCB}			
8	V _{CCB}	Р	B-port supply voltage. 1.65 V ≤ V _{CCB} ≤ 5.5 V			

Pin Functions: YZP

	PIN	TYPE	DESCRIPTION				
BALL	NAME	ITPE	DESCRIPTION				
A1	V _{CCA}	Р	A-port supply voltage. 1.65 V ≤ V _{CCA} ≤ 5.5 V				
A2	V _{CCB}	Р	B-port supply voltage. 1.65 V ≤ V _{CCB} ≤ 5.5 V				
B1	A1	I/O	Input/output A1. Referenced to V _{CCA}				
B2	B1	I/O	Input/output B1. Referenced to V _{CCB}				
C1	A2	I/O	Input/output A2. Referenced to V _{CCA}				
C2	B2	I/O	Input/output B2. Referenced to V _{CCB}				
D1	GND	G	Ground				
D2	DIR	I	Direction control signal				

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CCA}	Supply voltage	-0.5	6.5	V	
VI	Input voltage (2)	-0.5	6.5	V	
Vo	Voltage range applied to any output in the high-impe	-0.5	6.5	V	
Vo	Voltage range applied to any output in the high or	A port	-0.5	V _{CCA} + 0.5	
	low state ⁽²⁾ (3)	B port	-0.5	V _{CCB} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
lok	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA
TJ	Junction temperature	5 50			
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±4000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V
		Machine model (A115-A)	±200	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted) (1) (2) (3)

			V _{CCI}	V _{cco}	MIN	MAX	UNIT
V_{CCA}	Commissional				1.65	5.5	
V _{CCB}	Supply voltage				1.65	5.5	V
V _{IH}			1.65 V to 1.95 V		V _{CCI} × 0.65		
	High-level	Data inputs ⁽⁴⁾	2.3 V to 2.7 V		1.7		V
	input voltage	Data inputs 17	3 V to 3.6 V		2		V
			4.5 V to 5.5 V		$V_{CCI} \times 0.7$		
		I Data innuits (T)	1.65 V to 1.95 V			$V_{CCI} \times 0.35$	
	Low-level		2.3 V to 2.7 V			0.7	V
V _{IL}	input voltage		3 V to 3.6 V			0.8	V
			4.5 V to 5.5 V			$V_{CCI} \times 0.3$	

Submit Documentation Feedback

Copyright © 2003–2017, Texas Instruments Incorporated

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the recommended operating conditions table.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽¹⁾ V_{CCI} is the V_{CC} associated with the input port.

⁽²⁾ V_{CCO} is the V_{CC} associated with the output port.

⁽³⁾ All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. See *Implications of Slow or Floating CMOS Inputs*, SCBA004.

⁽⁴⁾ For V_{CCI} values not specified in the data sheet, V_{IH} min = $V_{CCI} \times 0.7$ V, V_{IL} max = $V_{CCI} \times 0.3$ V.

Recommended Operating Conditions (continued)

over operating free-air temperature range (unless otherwise noted)(1) (2) (3)

			V _{CCI}	V _{cco}	MIN	MAX	UNIT	
			1.65 V to 1.95 V		$V_{CCA} \times 0.65$			
V	High-level input voltage	DIR	2.3 V to 2.7 V		1.7		V	
V_{IH}		(referenced to V _{CCA}) ⁽⁵⁾	3 V to 3.6 V		2		V	
			4.5 V to 5.5 V		$V_{CCA} \times 0.7$			
			1.65 V to 1.95 V			$V_{CCA} \times 0.35$		
V	Low-level	DIR	2.3 V to 2.7 V			0.7	V	
V_{IL}	input voltage	(referenced to V _{CCA}) ⁽⁵⁾	3 V to 3.6 V			0.8	V	
			4.5 V to 5.5 V			$V_{CCA} \times 0.3$		
V _I	Input voltage	voltage			0	5.5	V	
Vo	Output voltage				0	V _{cco}	V	
				1.65 V to 1.95 V		-4		
	High lavel autout ave			2.3 V to 2.7 V		-8	mA	
I _{OH}	High-level output cur	rent		3 V to 3.6 V		-24		
				4.5 V to 5.5 V		-32		
				1.65 V to 1.95 V		4		
	Low lovel output our	ront		2.3 V to 2.7 V		8	A	
I _{OL}	Low-level output cur	rent		3 V to 3.6 V		24	mA	
				4.5 V to 5.5 V		32		
			1.65 V to 1.95 V			20		
		Data innuta	2.3 V to 2.7 V			20		
$\Delta t/\Delta v$	Input transition rise or fall rate	Data inputs	3 V to 3.6 V			10	ns/V	
	noo or rail rato		4.5 V to 5.5 V			5		
		Control input	1.65 V to 5.5 V			5		
T _A	Operating free-air te	mperature			-40	85	°C	

⁽⁵⁾ For V_{CCI} values not specified in the data sheet, V_{IH} min = $V_{CCA} \times 0.7$ V, V_{IL} max = $V_{CCA} \times 0.3$ V.

6.4 Thermal Information

			SN74LVC2T45		
	THERMAL METRIC ⁽¹⁾	DCT	DCU	YZP	UNIT
			8 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	184.0	203.6	105.8	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	114.7	75.9	1.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	96.4	82.3	10.8	°C/W
ΨЈТ	Junction-to-top characterization parameter	40.8	7.2	3.1	°C/W
ΨЈВ	Junction-to-board characterization parameter	95.4	81.9	10.8	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics (1)(2)

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		V-	V-	Т	A = 25°	С	-40°C to +8	35°C	UNIT
		TEST CONDITI	ONS	V _{CCA}	V _{CCB}	MIN	TYP	MAX	MIN	MAX	UNII
		$I_{OH} = -100 \ \mu A$		1.65 V to 4.5 V	1.65 V to 4.5 V				V _{CCO} - 0.1		
V_{OH}		$I_{OH} = -4 \text{ mA}$		1.65 V	1.65 V				1.2		
		I _{OH} = -8 mA	$V_I = V_{IH}$	2.3 V	2.3 V				1.9		V
		$I_{OH} = -24 \text{ mA}$		3 V	3 V				2.4		
		$I_{OH} = -32 \text{ mA}$		4.5 V	4.5 V				3.8		
		I _{OL} = 100 μA		1.65 V to 4.5 V	1.65 V to 4.5 V					0.1	
		I _{OL} = 4 mA		1.65 V	1.65 V					0.45	
V _{OL}		$I_{OL} = 8 \text{ mA}$	$V_I = V_{IL}$	2.3 V	2.3 V					0.3	V
		$I_{OL} = 24 \text{ mA}$		3 V	3 V					0.55	
		$I_{OL} = 32 \text{ mA}$		4.5 V	4.5 V					0.55	
l _l	DIR	$V_I = V_{CCA}$ or GND		1.65 V to 5.5 V	1.65 V to 5.5 V			±1		±2	μΑ
	A port	V_I or $V_O = 0$ to 5.5 V		0 V	0 to 5.5 V			±1		±2	uА
off	B port			0 to 5.5 V	0 V			±1		±2	
l _{oz}	A or B port	$V_O = V_{CCO}$ or GND		1.65 V to 5.5 V	1.65 V to 5.5 V			±1		±2	μΑ
-				1.65 V to 5.5 V	1.65 V to 5.5 V					3	
I_{CCA}		$V_I = V_{CCI}$ or GND, $I_O = 0$		5 V	0 V					2	μΑ
				0 V	5 V					-2	
				1.65 V to 5.5 V	1.65 V to 5.5 V					3	
I _{CCB}		$V_I = V_{CCI}$ or GND, I	I _O = 0	5 V	0 V					-2	μΑ
				0 V	5 V					2	
I _{CCA} + I (see Ta	CCB able 5)	$V_I = V_{CCI}$ or GND, I	I _O = 0	1.65 V to 5.5 V	1.65 V to 5.5 V					4	μΑ
A.I.	A port	One A port at V _{CCA} DIR at V _{CCA} , B port = open	– 0.6 V,	2 \/ +o = = \/	2 V to 5 5 V					50	
ΔI _{CCA}	DIR	DIR at $V_{CCA} - 0.6 V$ B port = open, A port at V_{CCA} or GN		3 V to 5.5 V	3 V to 5.5 V					50	μА
ΔI _{CCB}	B port	One B port at V _{CCB} - DIR at GND, A port		3 V to 5.5 V	3 V to 5.5 V					50	μA
Cı	DIR	$V_I = V_{CCA}$ or GND		3.3 V	3.3 V		2.5				pF
C _{io}	A or B port	$V_O = V_{CCA/B}$ or GND)	3.3 V	3.3 V		6				pF

 $[\]begin{array}{ll} \hbox{(1)} & V_{CCO} \text{ is the } V_{CC} \text{ associated with the output port.} \\ \hbox{(2)} & V_{CCI} \text{ is the } V_{CC} \text{ associated with the input port.} \\ \end{array}$

6.6 Switching Characteristics: $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$

over recommended operating free-air temperature range, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (unless otherwise noted) (see Figure 17)

PARAMETER	FROM	TO (OUTPUT)	V _{CCB} = ±0.15		V _{CCB} = ±0.2		V _{CCB} = 1 ±0.3		V _{CCB} = ±0.5		UNIT
	(INPUT)	(001P01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	Α	В	3	17.7	2.2	10.3	1.7	8.3	1.4	7.2	no
t _{PHL}	A	Ь	2.8	14.3	2.2	8.5	1.8	7.1	1.7	7	ns
t _{PLH}	В	^	3	17.7	2.3	16	2.1	15.5	1.9	15.1	20
t _{PHL}	Б	A	2.8	14.3	2.1	12.9	2	12.6	1.8	12.2	ns
t _{PHZ}	DIR	۸	10.6	30.9	10.3	30.5	10.5	30.5	10.7	29.3	20
t _{PLZ}	אוט	А	7.3	19.7	7.5	19.6	7.5	19.5	7	19.4	ns

Submit Documentation Feedback

Copyright © 2003–2017, Texas Instruments Incorporated

Switching Characteristics: $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (continued)

over recommended operating free-air temperature range, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (unless otherwise noted) (see Figure 17)

PARAMETER	FROM			±0.13 V ±0.2 V			V _{CCB} = 3.3 V ±0.3 V		V _{CCB} = 5 V ±0.5 V		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PHZ}	DIR	В	10	27.9	8.4	14.9	6.5	11.3	4.1	8.6	ns
t _{PLZ}	DIK	ь	6.5	19.5	7.2	12.6	4.3	9.7	2.1	7.1	113
t _{PZH} ⁽¹⁾	DIR	А		37.2		28.6		25.2		22.2	20
t _{PZL} ⁽¹⁾	DIK	A		42.2		27.8		23.9		20.8	ns
t _{PZH} ⁽¹⁾	DIR	В		37.4		29.9		27.8		26.6	20
t _{PZL} ⁽¹⁾	DIK	Б		45.2		39		37.6		36.3	ns

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the *Enable Times* section.

6.7 Switching Characteristics: $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$

over recommended operating free-air temperature range, V_{CCA} = 2.5 V ± 0.2 V (unless otherwise noted) (see Figure 17)

PARAMETER	FROM			V _{CCB} = 1.8 V ±0.15 V		V _{CCB} = 3.3 V ±0.3 V		V _{CCB} = 5 V ±0.5 V		UNIT	
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	Α	В	2.3	16	1.5	8.5	1.3	6.4	1.1	5.1	no
t _{PHL}	A	Ь	2.1	12.9	1.4	7.5	1.3	5.4	0.9	4.6	ns
t _{PLH}	В	^	2.2	10.3	1.5	8.5	1.4	8	1	7.5	
t _{PHL}	В	А	2.2	8.5	1.4	7.5	1.3	7	0.9	6.2	ns
t _{PHZ}	DIR	А	6.6	17.1	7.1	16.8	6.8	16.8	5.2	16.5	ns
t _{PLZ}	DIK	A	5.3	12.6	5.2	12.5	4.9	12.3	4.8	12.3	113
t _{PHZ}	DIR	В	10.7	27.9	8.1	13.9	5.8	10.5	3.5	7.6	
t_{PLZ}	DIK	В	7.8	18.9	6.2	11.2	3.6	8.9	1.4	6.2	ns
t _{PZH} ⁽¹⁾	DIR	^		29.2		19.7		16.9		13.7	no
t _{PZL} ⁽¹⁾	DIR	Α		36.4		21.4		17.5		13.8	ns
t _{PZH} ⁽¹⁾	DIR	В		28.6		21		18.7		17.4	ns
t _{PZL} ⁽¹⁾	ЫK	Б		30		24.3		22.2		21.1	

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the Enable Times section.

6.8 Switching Characteristics: $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range, V_{CCA} = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 17)

PARAMETER	FROM			V _{CCB} = 1.8 V ±0.15 V		V _{CCB} = 3.3 V ±0.3 V		V _{CCB} = 5 V ±0.5 V		UNIT	
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	Α	В	2.1	15.5	1.4	8	0.7	5.6	0.7	4.4	no
t _{PHL}	^	Ь	2	12.6	1.3	7	0.8	5	0.7	4	ns
t _{PLH}	В	^	1.7	8.3	1.3	6.4	0.7	5.8	0.6	5.4	20
t _{PHL}	В	Α	1.8	7.1	1.3	5.4	0.8	5	0.7	4.5	ns
t _{PHZ}	DIR	A	5	10.9	5.1	10.8	5	10.8	5	10.4	no
t _{PLZ}	DIK	A	3.4	8.4	3.7	8.4	3.9	8.1	3.3	7.8	ns
t _{PHZ}	DIR	В	11.2	27.3	8	13.7	5.8	10.4	2.9	7.4	20
t _{PLZ}	DIK	Ь	9.4	17.7	5.6	11.3	4.3	8.3	1	5.6	ns
t _{PZH} (1)	DIR	^		26		17.7		14.1		11	200
t _{PZL} ⁽¹⁾	ЫK	Α		34.4		19.1		15.4		11.9	ns

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the Enable Times section.

Switching Characteristics: $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (continued)

over recommended operating free-air temperature range, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 17)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	±0.13 V		V _{CCB} = 2.5 V ±0.2 V		V _{CCB} = 3.3 V ±0.3 V		V _{CCB} = 5 V ±0.5 V		UNIT
	(INPUT)	(001701)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PZH} ⁽¹⁾	DIB	В		23.9		16.4		13.9		12.2	
t _{PZL} ⁽¹⁾	DIR	В		23.5		17.8		15.8		14.4	ns

6.9 Switching Characteristics: $V_{CCA} = 5 V \pm 0.5 V$

over recommended operating free-air temperature range, $V_{CCA} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted) (see Figure 17)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.8 V ±0.15 V		V _{CCB} = 2.5 V ±0.2 V		V _{CCB} = 3.3 V ±0.3 V		V _{CCB} = 5 V ±0.5 V		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	Α	В	1.9	15.1	1	7.5	0.6	5.4	0.5	3.9	20
t _{PHL}	A	Ь	1.8	12.2	0.9	6.2	0.7	4.5	0.5	3.5	ns
t _{PLH}	В	А	1.4	7.2	1	5.1	0.7	4.4	0.5	3.9	no
t _{PHL}	Ь	A	1.7	7	0.9	4.6	0.7	4	0.5	3.5	ns
t _{PHZ}	DIR	А	2.9	8.2	2.9	7.9	2.8	7.9	2.2	7.8	ns
t _{PLZ}	DIK	A	1.4	6.9	1.3	6.7	0.7	6.7	0.7	6.6	113
t _{PHZ}	DIR	В	11.2	26.1	7.2	13.9	5.8	10.1	1.3	7.3	no
t _{PLZ}	DIK	Ь	8.4	16.9	5	11	4	7.7	1	5.6	ns
t _{PZH} (1)	DIR	^		24.1		16.1		12.1		9.5	no
t _{PZL} (1)	DIK	Α		33.1		18.5		14.1		10.8	ns
t _{PZH} (1)	DIR	В		22		14.2		12.1		10.5	
t _{PZL} ⁽¹⁾	DIK	Б		20.4		14.1		12.4		11.3	ns

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the *Enable Times* section.

6.10 Operating Characteristics

 $T_A = 25^{\circ}C$

F	PARAMETER	TEST CONDITIONS	V _{CCA} = V _{CCB} = 1.8 V	V _{CCA} = V _{CCB} = 2.5 V	V _{CCA} = V _{CCB} = 3.3 V	V _{CCA} = V _{CCB} = 5 V	UNIT
C (1)	A-port input, B-port output	$C_L = 0 \text{ pF},$	3	4	4	4	5
C _{pdA} ⁽¹⁾	B-port input, A-port output $t_r = t_f = 1$	$f = 10 \text{ MHz},$ $t_r = t_f = 1 \text{ ns}$	18	19	20	21	pF
C (1)	A-port input, B-port output	$C_L = 0 \text{ pF},$	18	19	20	21	5
C _{pdB} ⁽¹⁾	B-port input, A-port output	$f = 10 \text{ MHz},$ $t_r = t_f = 1 \text{ ns}$	3	4	4	4	pF

(1) Power dissipation capacitance per transceiver

Submit Documentation Feedback

Copyright © 2003–2017, Texas Instruments Incorporated

6.11 Typical Characteristics

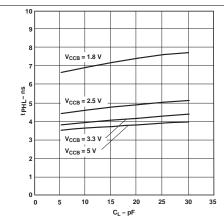


Figure 1. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 1.8 \text{ V}$

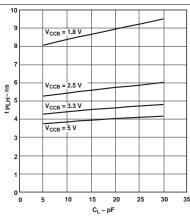


Figure 2. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 1.8 \text{ V}$

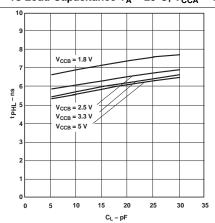


Figure 3. Typical Propagation Delay of High-to-Low (B to A) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 1.8 \text{ V}$

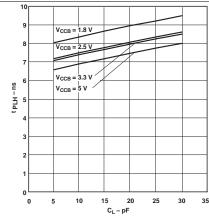


Figure 4. Typical Propagation Delay of Low-to-High (B to A) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 1.8 \text{ V}$

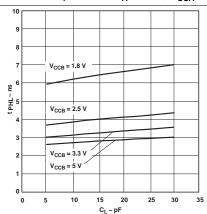


Figure 5. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 2.5 \text{ V}$

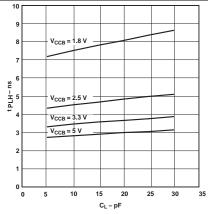


Figure 6. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 2.5$ V

Typical Characteristics (continued)

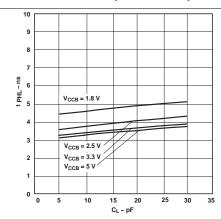


Figure 7. Typical Propagation Delay of High-to-Low (B to A) vs Load Capacitance $T_A = 25$ °C, $V_{CCA} = 2.5$ V

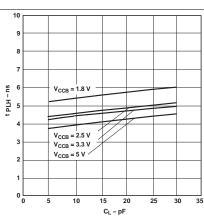


Figure 8. Typical Propagation Delay of Low-to-High (B to A) vs Load Capacitance T_A = 25°C, V_{CCA} = 2.5 V

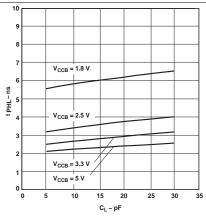


Figure 9. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance $T_A = 25$ °C, $V_{CCA} = 3.3 \text{ V}$

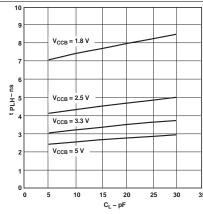


Figure 10. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance $T_A = 25$ °C, $V_{CCA} = 3.3$ V

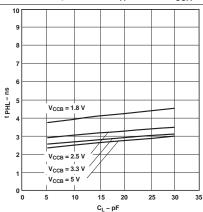


Figure 11. Typical Propagation Delay of High-to-Low (B to A) vs Load Capacitance T_A = 25°C, V_{CCA} = 3.3 V

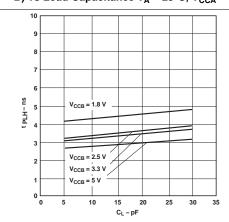


Figure 12. Typical Propagation Delay of Low-to-High (B to A) vs Load Capacitance $T_A = 25$ °C, $V_{CCA} = 3.3$ V

Submit Documentation Feedback

Copyright © 2003–2017, Texas Instruments Incorporated

Typical Characteristics (continued)

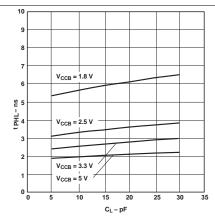


Figure 13. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 5$ V

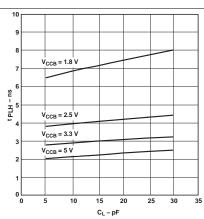


Figure 14. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 5 \text{ V}$

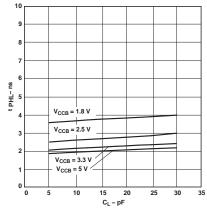


Figure 15. Typical Propagation Delay of High-to-Low (B to A) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 5$ V

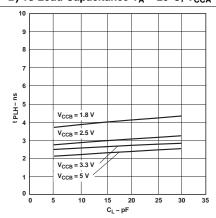
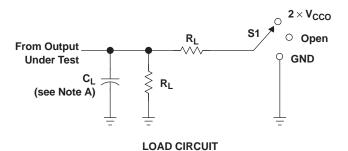
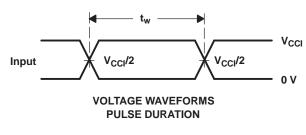


Figure 16. Typical Propagation Delay of Low-to-High (B to A) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 5$ V

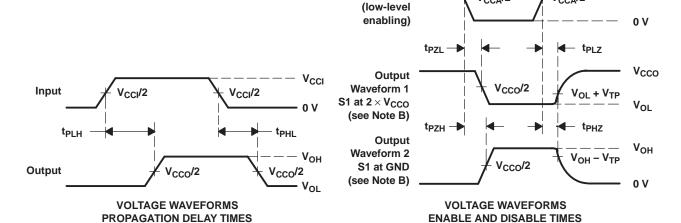

Copyright © 2003–2017, Texas Instruments Incorporated

Submit Documentation Feedback

VCCA



7 Parameter Measurement Information


S 1
Open
$2 \times V_{CCO}$
GND

V _{CCO}	CL	R _L	V _{TP}
1.8 V \pm 0.15 V	15 pF	2 k Ω	0.15 V
2.5 V \pm 0.2 V	15 pF	2 k Ω	0.15 V
3.3 V \pm 0.3 V	15 pF	2 k Ω	0.3 V
5 V \pm 0.5 V	15 pF	2 k Ω	0.3 V

V_{CCA}/2

V_{CCA}/2

Output Control

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $dv/dt \geq 1 V/ns$.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .
 - H. V_{CCI} is the V_{CC} associated with the input port.
 - I. V_{CCO} is the V_{CC} associated with the output port.
 - J. All parameters and waveforms are not applicable to all devices.

Figure 17. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

Copyright © 2003–2017, Texas Instruments Incorporated

8 Detailed Description

8.1 Overview

The SN74LVC2T45 is dual-bit, dual-supply noninverting voltage level translation. Pin Ax and direction control pin are support by V_{CCA} and pin Bx are support by V_{CCB} . The A port is able to accept I/O voltages ranging from 1.65 V to 5.5 V, while the B port can accept I/O voltages from 1.65 V to 5.5 V. The high on DIR allows data transmission from A to B and a low on DIR allows data transmission from B to A.

8.2 Functional Block Diagram

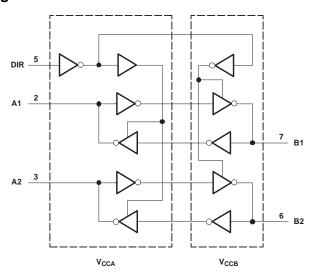


Figure 18. Logic Diagram (Positive Logic)

8.3 Feature Description

8.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.65-V to 5.5-V Power-Supply Range

Both V_{CCA} and V_{CCB} can be supplied at any voltage between 1.65 V and 5.5 V making the device suitable for translating between any of the voltage nodes (1.8-V, 2.5-V, 3.3-V and 5-V).

8.3.2 Support High-Speed Translation

SN74LVC2T45 can support high data rate application. The translated signal data rate can be up to 420 Mbps when signal is translated from 3.3 V to 5 V.

8.3.3 I_{off} Supports Partial-Power-Down Mode Operation

I_{off} will prevent backflow current by disabling I/O output circuits when device is in partial-power-down mode.

8.4 Device Functional Modes

Table 1 lists the functional modes of the SN74LVC2T45 device.

Table 1. Function Table (1) (Each Transceiver)

INPUT DIR	OPERATION
L	B data to A bus
Н	A data to B bus

(1) Input circuits of the data I/Os always are active.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74LVC2T45 device can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The maximum data rate can be up to 420 Mbps when device translate signal from 3.3 V to 5 V.

9.2 Typical Applications

9.2.1 Unidirectional Logic Level-Shifting Application

Figure 19 shows an example of the SN74LVC2T45 being used in a unidirectional logic level-shifting application.

Figure 19. Unidirectional Logic Level-Shifting Application

9.2.1.1 Design Requirements

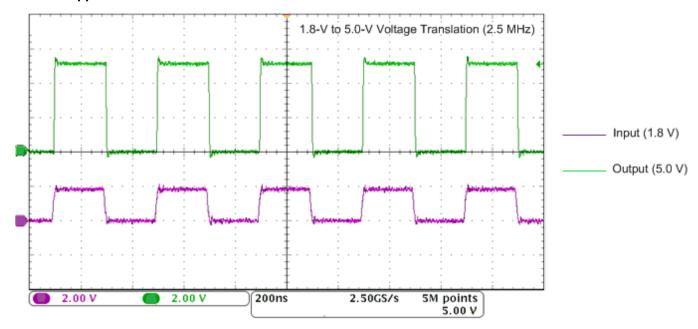
Table 2 lists the pins and pin descriptions of the SN74LVC2T45 connections with SYSTEM-1 and SYSTEM-2.

Table 2. SN74LVC2T45 Pin Connections With SYSTEM-1 and SYSTEM-2

PIN	NAME	FUNCTION	DESCRIPTION
1	V _{CCA}	V _{CC1}	SYSTEM-1 supply voltage (1.65 V to 5.5 V)
2	A1	OUT1	Output level depends on V _{CC1} voltage.
3	A2	OUT2	Output level depends on V _{CC1} voltage.
4	GND	GND	Device GND
5	DIR	DIR	GND (low level) determines B-port to A-port direction.
6	B2	IN2	Input threshold value depends on V _{CC2} voltage.
7	B1	IN1	Input threshold value depends on V _{CC2} voltage.
8	V _{CCB}	V _{CC2}	SYSTEM-2 supply voltage (1.65 V to 5.5 V)

For this design example, use the parameters listed in Table 3.

Table 3. Design Parameters


DESIGN PARAMETER	EXAMPLE VALUE
Input voltage range	1.65 V to 5.5 V
Output voltage range	1.65 V to 5.5 V

9.2.1.2 Detailed Design Procedure

To begin the design process, determine the following:

- · Input voltage range
 - Use the supply voltage of the device that is driving the SN74LVC2T45 device to determine the input voltage range. For a valid logic high the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{IL} of the input port.
- Output voltage range
 - Use the supply voltage of the device that the SN74LVC2T45 device is driving to determine the output voltage range.

9.2.1.3 Application Curve

9.2.2 Bidirectional Logic Level-Shifting Application

Figure 20 shows the SN74LVC2T45 being used in a bidirectional logic level-shifting application. Because the SN74LVC2T45 does not have an output-enable (OE) pin, the system designer should take precautions to avoid bus contention between SYSTEM-1 and SYSTEM-2 when changing directions.

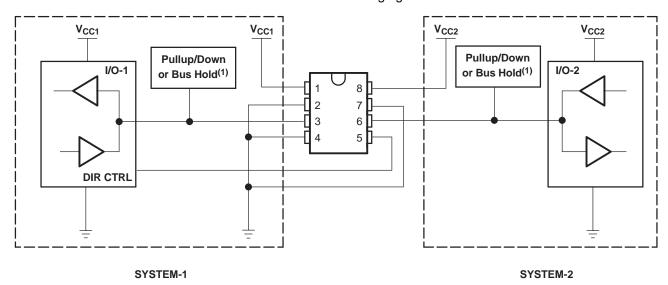


Figure 20. Bidirectional Logic Level-Shifting Application

9.2.2.1 Design Requirements

Please refer to Unidirectional Logic Level-Shifting Application.

9.2.2.2 Detailed Design Procedure

Table 4 shows data transmission from SYSTEM-1 to SYSTEM-2 and then from SYSTEM-2 to SYSTEM-1.

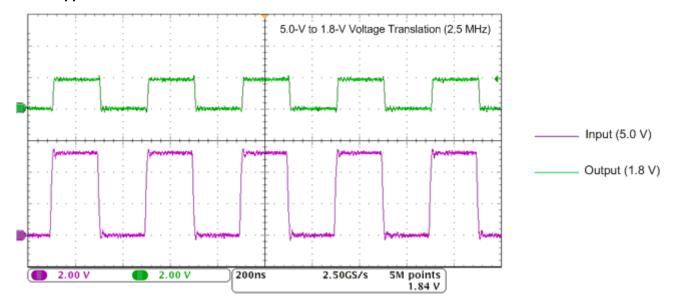
DIR CTRL DESCRIPTION STATE I/O-1 1/0-2 Out In SYSTEM-1 data to SYSTEM-2 SYSTEM-2 is getting ready to send data to SYSTEM-1. I/O-1 and I/O-2 are disabled. The bus-2 Hi-Z Hi-Z line state depends on pullup or pulldown. (1) DIR bit is flipped. I/O-1 and I/O-2 still are disabled. The bus-line state depends on pullup or pulldown. (1) 3 L Hi-Z Hi-Z In Out SYSTEM-2 data to SYSTEM-1

Table 4. Data Transmission Sequence

(1) SYSTEM-1 and SYSTEM-2 must use the same conditions, that is, both pullup or both pulldown.

9.2.2.2.1 Enable Times

Calculate the enable times for the SN74LVC2T45 using the following formulas:


- t_{PZH} (DIR to A) = t_{PLZ} (DIR to B) + t_{PLH} (B to A)
- t_{PZL} (DIR to A) = t_{PHZ} (DIR to B) + t_{PHL} (B to A)
- t_{PZH} (DIR to B) = t_{PLZ} (DIR to A) + t_{PLH} (A to B)
- t_{PZL} (DIR to B) = t_{PHZ} (DIR to A) + t_{PHL} (A to B)

Submit Documentation Feedback

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the SN74LVC2T45 initially is transmitting from A to B, then the DIR bit is switched; the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

9.2.2.3 Application Curve

10 Power Supply Recommendations

10.1 Power-Up Considerations

A proper power-up sequence with inputs held at ground should be followed as listed:

- 1. Connect ground before any supply voltage is applied.
- 2. Power up V_{CCA}.
- 3. V_{CCB} can be ramped up along with or after V_{CCA}.

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} pin must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended. If there are multiple V_{CC} pins, 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1- μ F and 1- μ F are commonly used in parallel. The bypass capacitor must be installed as close to the power pin as possible for best results.

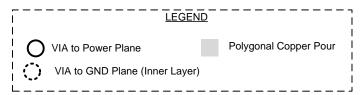
VCCA UNIT V_{CCB} 0 V 1.8 V 2.5 V 3.3 V 5 V 0 V 0 <1 <1 <1 <1 1.8 V <1 <2 <2 <2 2 2.5 V <1 <2 <2 <2 <2 μΑ 3.3 V <1 <2 <2 <2 <2 5 V 2 <2 <1 <2 <2

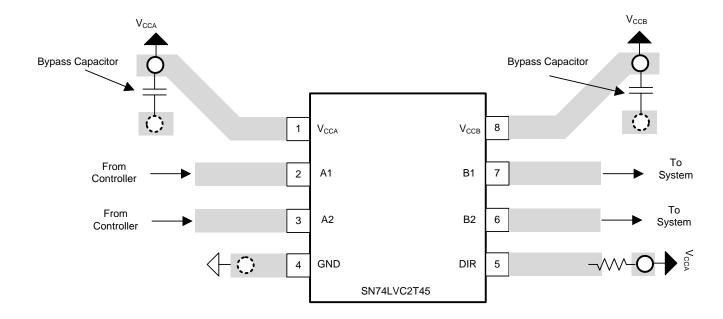
Table 5. Typical Total Static Power Consumption (I_{CCA} + I_{CCB})

11 Layout

11.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines is recommended.


- Bypass capacitors should be used on power supplies.
- Short trace lengths should be used to avoid excessive loading.



Layout Guidelines (continued)

• Placing pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of signals depending on the system requirements

11.2 Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

Implications of Slow or Floating CMOS Inputs, SCBA004.

Designing with SN74LVCXT245 and SN74LVCHXT245 Family of Direction controlled voltage translators, SLVA746

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

NanoFree, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp (3)
SN74LVC2T45DCTR	ACTIVE	SM8	DCT	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM
SN74LVC2T45DCTRE4	ACTIVE	SM8	DCT	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM
SN74LVC2T45DCTT	ACTIVE	SM8	DCT	8	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM
SN74LVC2T45DCTTG4	ACTIVE	SM8	DCT	8	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM
SN74LVC2T45DCUR	ACTIVE	VSSOP	DCU	8	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM
SN74LVC2T45DCURE4	ACTIVE	VSSOP	DCU	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM
SN74LVC2T45DCURG4	ACTIVE	VSSOP	DCU	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM
SN74LVC2T45DCUT	ACTIVE	VSSOP	DCU	8	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM
SN74LVC2T45DCUTG4	ACTIVE	VSSOP	DCU	8	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM
SN74LVC2T45YZPR	ACTIVE	DSBGA	YZP	8	3000	RoHS & Green	SAC396 SNAGCU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including to not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in sufference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000pp flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a lie of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/files if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis of TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

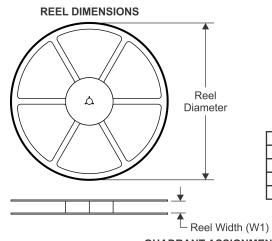
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer of

OTHER QUALIFIED VERSIONS OF SN74LVC2T45:

Automotive: SN74LVC2T45-Q1

Enhanced Product: SN74LVC2T45-EP

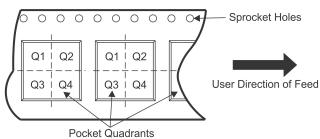
NOTE: Qualified Version Definitions:


Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

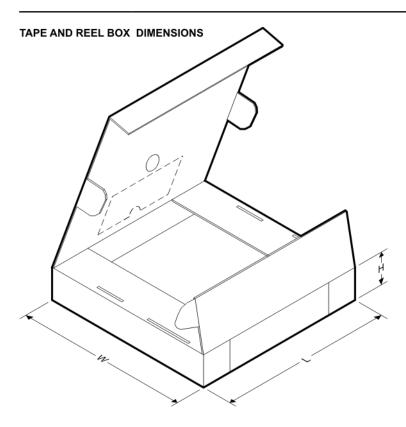
www.ti.com 28-Jul-2020


TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity AO

	Dimension designed to accommodate the component width						
	Dimension designed to accommodate the component length						
K0	Dimension designed to accommodate the component thickness						
W	Overall width of the carrier tape						
P1	Pitch between successive cavity centers						

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

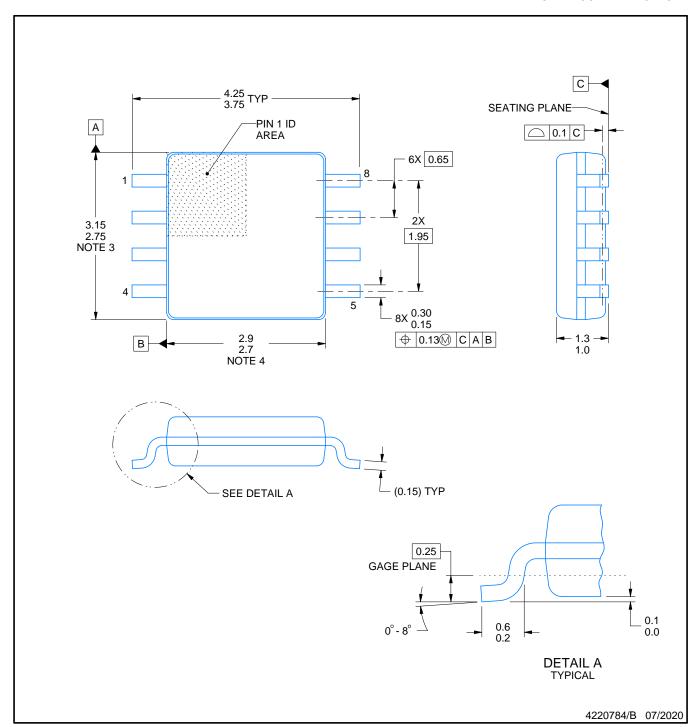


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC2T45DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
SN74LVC2T45DCTT	SM8	DCT	8	250	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
SN74LVC2T45DCUR	VSSOP	DCU	8	3000	178.0	9.0	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2T45DCUR	VSSOP	DCU	8	3000	180.0	9.0	2.25	3.4	1.0	4.0	8.0	Q3
SN74LVC2T45DCURG4	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2T45DCUTG4	VSSOP	DCU	8	250	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2T45YZPR	DSBGA	YZP	8	3000	180.0	8.4	1.02	2.02	0.63	4.0	8.0	Q1
SN74LVC2T45YZPR	DSBGA	YZP	8	3000	178.0	9.2	1.02	2.02	0.63	4.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

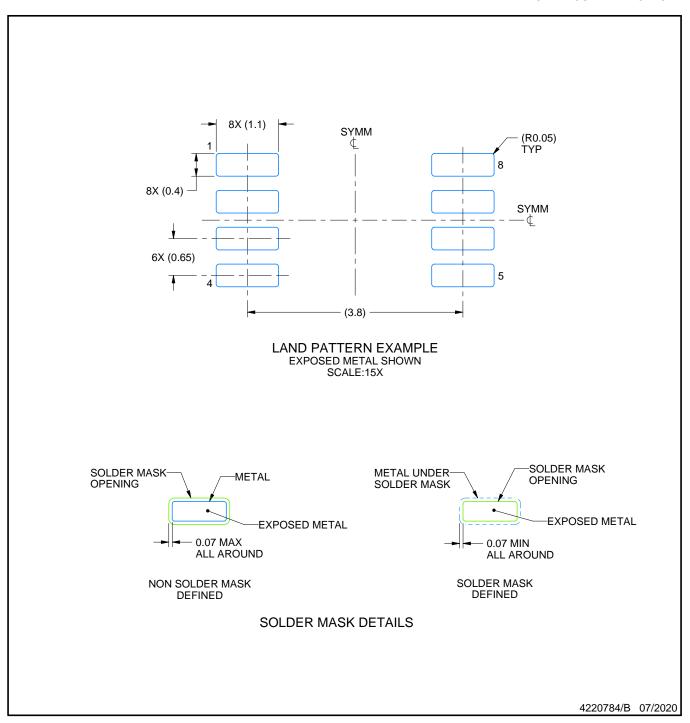
www.ti.com 28-Jul-2020



*All dimensions are nominal

7 til dilliciololio ale fiorillidi							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC2T45DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
SN74LVC2T45DCTT	SM8	DCT	8	250	182.0	182.0	20.0
SN74LVC2T45DCUR	VSSOP	DCU	8	3000	180.0	180.0	18.0
SN74LVC2T45DCUR	VSSOP	DCU	8	3000	182.0	182.0	20.0
SN74LVC2T45DCURG4	VSSOP	DCU	8	3000	202.0	201.0	28.0
SN74LVC2T45DCUTG4	VSSOP	DCU	8	250	202.0	201.0	28.0
SN74LVC2T45YZPR	DSBGA	YZP	8	3000	182.0	182.0	20.0
SN74LVC2T45YZPR	DSBGA	YZP	8	3000	220.0	220.0	35.0

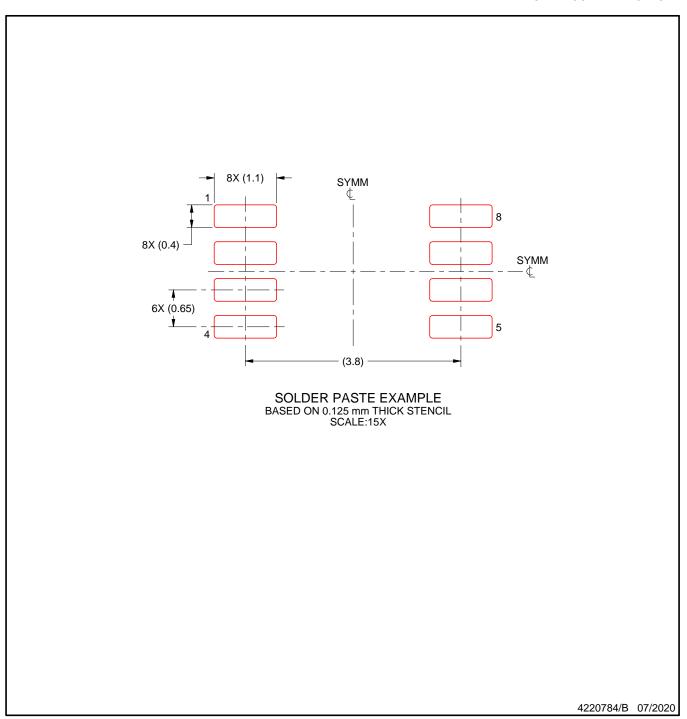
SMALL OUTLINE PACKAGE



NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M
- per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MS-187.

SMALL OUTLINE PACKAGE

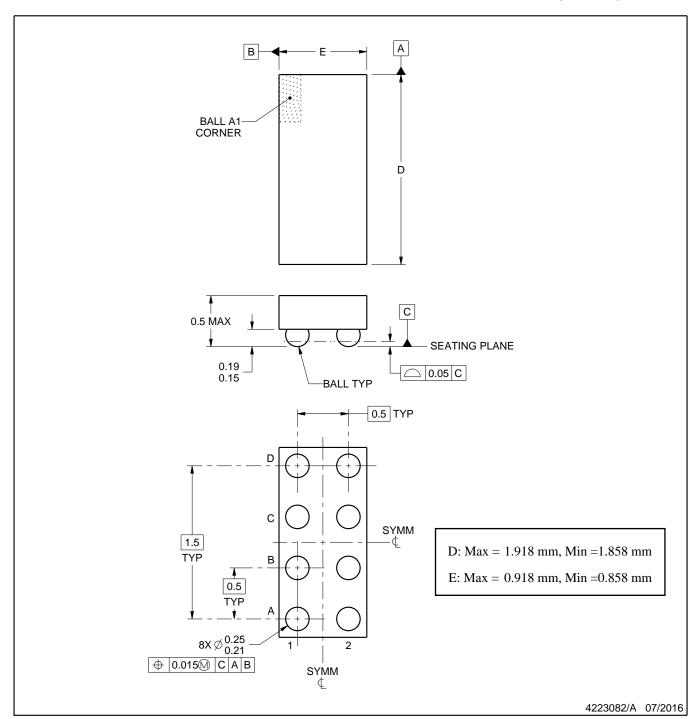

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

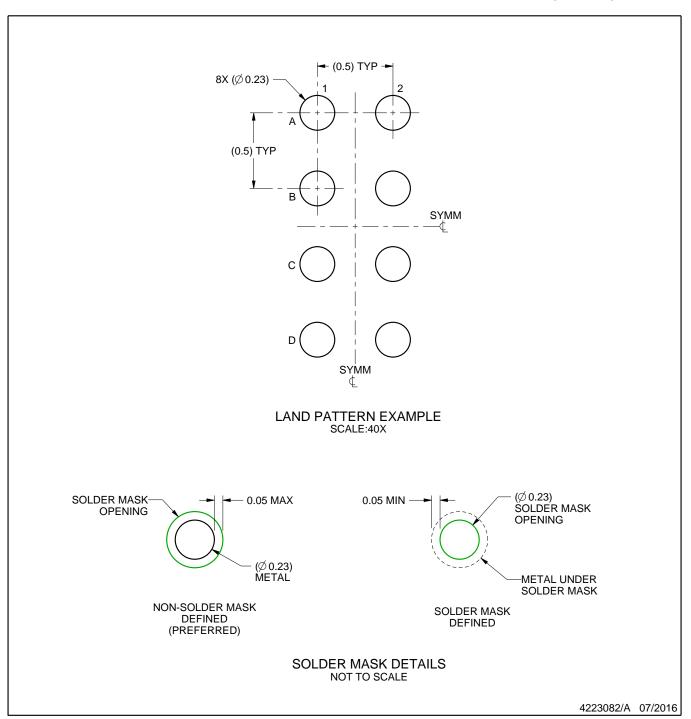
SMALL OUTLINE PACKAGE

NOTES: (continued)


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

 9. Board assembly site may have different recommendations for stencil design.

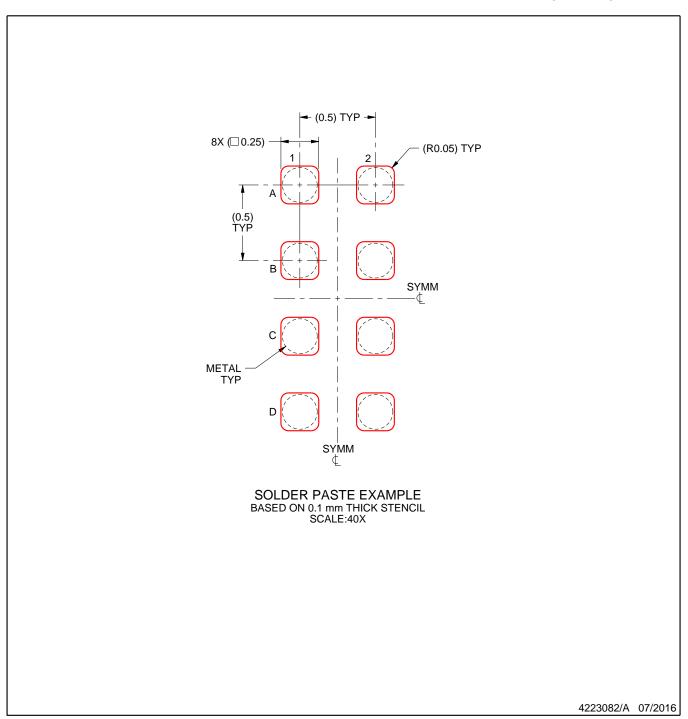
DIE SIZE BALL GRID ARRAY


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

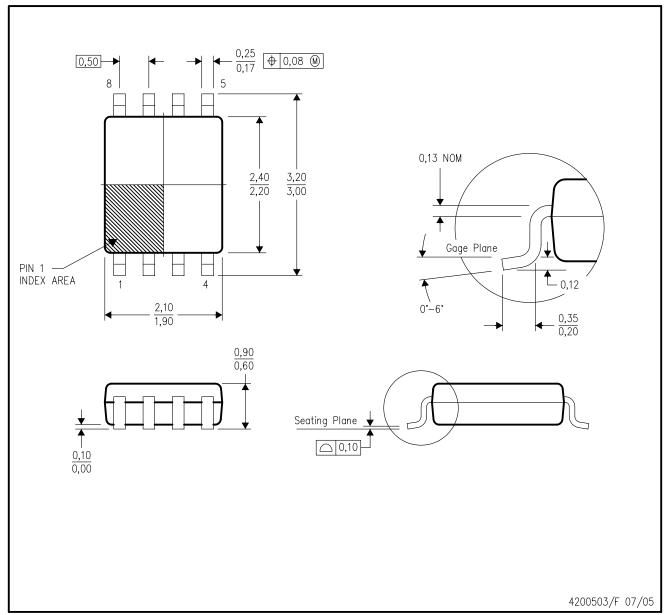
DIE SIZE BALL GRID ARRAY



NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

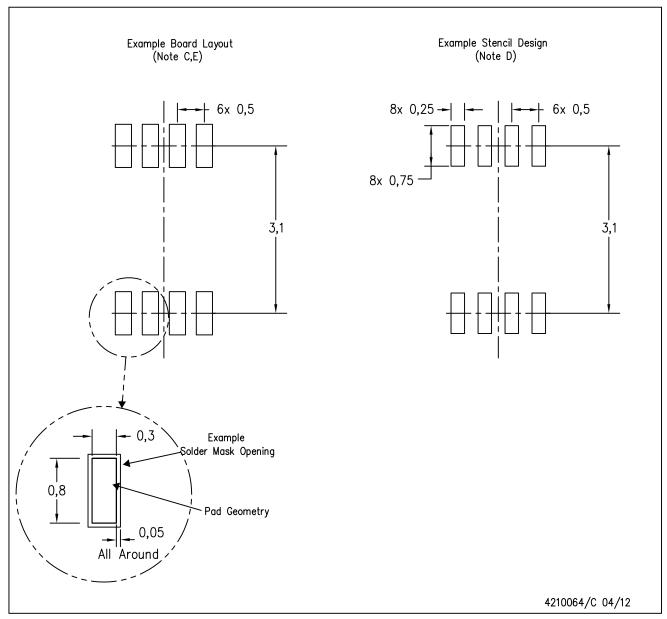
DIE SIZE BALL GRID ARRAY


NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

DCU (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-187 variation CA.

DCU (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE (DIE DOWN)

NOTES: A.

- : A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated