

Product Description

Qorvo's TGA2814-CP is a packaged high-power S-Band amplifier fabricated on Qorvo's QGaN25 0.25 um GaN on SiC process. Operating from 3.1 to 3.6 GHz, the TGA2814-CP achieves 80 W saturated output power, a power-added efficiency of 50 %, and power gain of 23 dB.

The TGA2814-CP is packaged in a 10-lead 15x15 mm bolt-down package with a Cu base for superior thermal management. It can support a range of bias voltages and performs well under both short and long pulse conditions. Both RF ports are internally DC blocked and matched to 50 ohms allowing for simple system integration.

The TGA2814-CP is ideally suited for both commercial and defense applications.

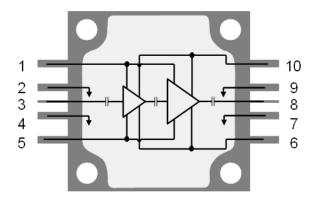
Product Features

• Frequency Range: 3.1 – 3.6 GHz

• Pout: 49 dBm @ PiN = 27 dBm

• PAE: 50% @ P_{IN} = 27 dBm

• Power Gain: 23 dB @ P_{IN} = 27 dBm


 Bias: V_D = +30 V, I_{DQ} = 200 mA, V_G = −3 V typical, Pulsed (PW = 15 ms, DC = 30 %)

• Package Dimensions: 15.2 x 15.2 x 3.5 mm

Package base is pure Cu offering superior thermal management

Performance is typical across frequency. Please reference electrical specification table and data plots for more details

Functional Block Diagram

Applications

Radar

Ordering Information

Part No.	Description	
TGA2814-CP	3.1 – 3.6 GHz 80 W GaN Power Amplifier	
1113464	TGA2814-CP Evaluation Board	

TGA2814-CP

3.1 – 3.6 GHz 80 W GaN Power Amplifier

Absolute Maximum Ratings

Parameter	Value / Range
Drain Voltage (V _D)	40 V
Gate Voltage Range (V _G)	-8 to 0 V
Drain Current (I _D)	10.4 A
Gate Current (I _G)	See plot page 8
Power Dissipation (PDISS), 85°C	112W
Input Power (P _{IN}), 50Ω, 85°C, CW	33 dBm
Input Power (P _{IN}), 85°C, VSWR 3:1, VD = 30V, CW	30 dBm
Lead Soldering Temperature (30 Seconds)	260°C
Storage Temperature	−55 to 150 °C

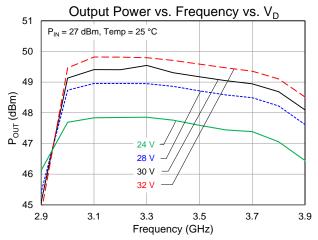
Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

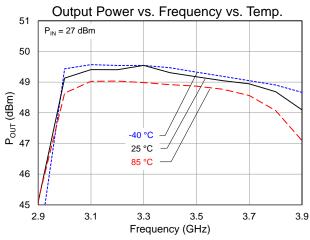
Recommended Operating Conditions

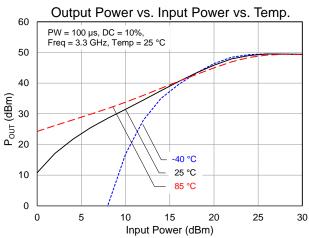
Parameter	Min	Тур.	Max	Units
Drain Voltage (V_D) pulsed: PW = 15 ms, DC = 30 %		+30		V
Drain Current, (I _{DQ})		200		mA
Gate Voltage (V _G)	-3 Typical		V	
T _{BASE} Range	-40		+85	٥C

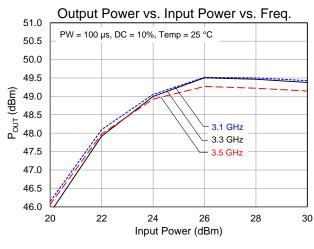
Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

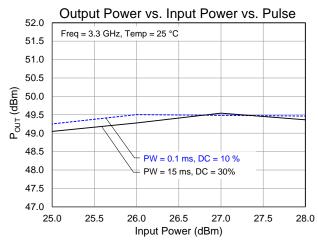
Electrical Specifications

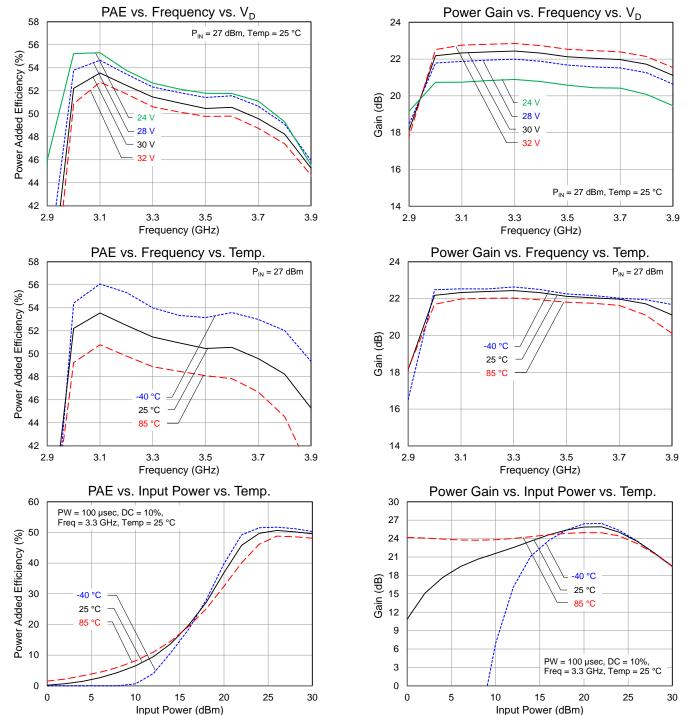

Parameter	Min	Тур	Max	Units
Operational Frequency Range	3.1		3.6	GHz
Input Return Loss		>15		dB
Output Return Loss		>5		dB
Output Power (@ P _{IN} = 27 dBm)		49		dBm
Power Added Efficiency (@ P _{IN} = 27 dBm)		50		%
Power Gain (at P _{IN} = 27 dBm)		23		dB
Output Power Temperature Coefficient		-0.005		dBm/°C


Test conditions unless otherwise noted: $25\,^{\circ}$ C, $V_D = +30\,$ V (PW = 15 ms, DC = 30 %), $I_{DQ} = 200\,$ mA, $V_G = -3\,$ V typical.

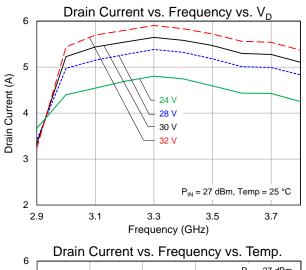


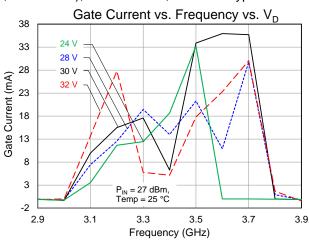

Typical Performance - Large Signal

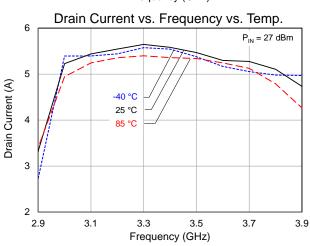

Conditions unless otherwise specified: $V_D = 30 \text{ V}$ (PW = 15 ms, DC = 30 %), $I_{DQ} = 200 \text{ mA}$, $V_G = -3 \text{ V}$ typical.

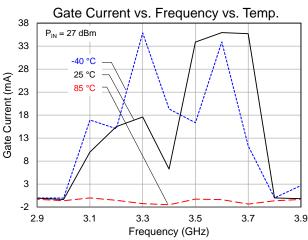


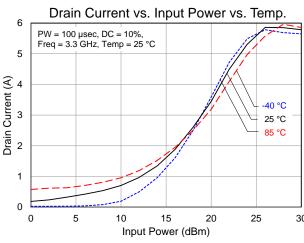
Typical Performance - Large Signal

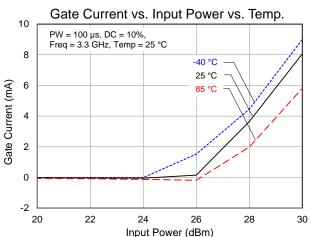

Conditions unless otherwise specified: $V_D = 30 \text{ V}$ (PW = 15 ms, DC = 30 %), $I_{DQ} = 200 \text{ mA}$, $V_G = -3 \text{ V}$ typical.

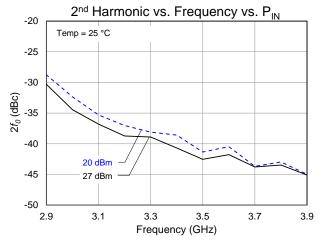


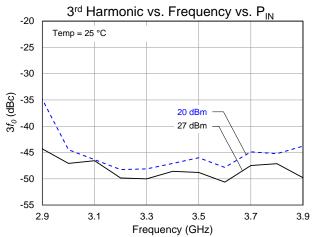



Typical Performance - Large Signal


Conditions unless otherwise specified: V_D = 30 V (PW = 15 ms, DC = 30 %), I_{DQ} = 200 mA, V_G = -3 V typical.







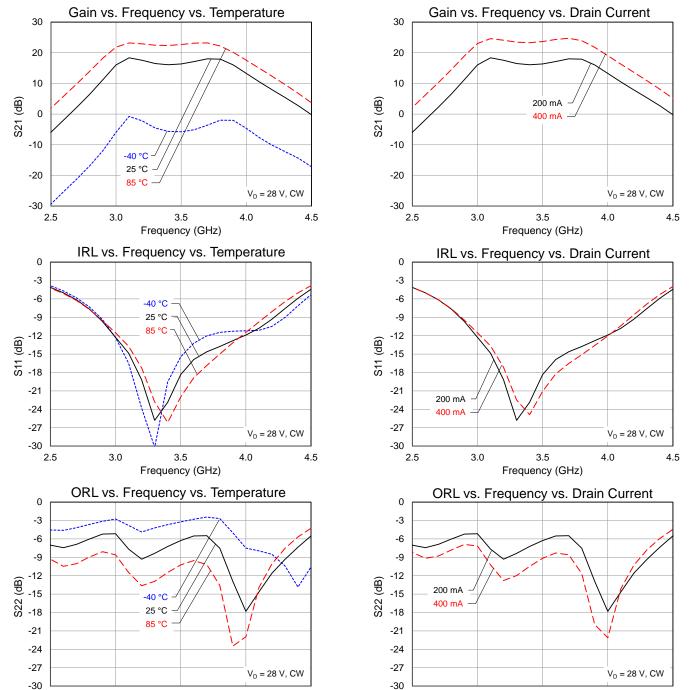
Typical Performance – Harmonics

Conditions unless otherwise specified: $V_D = 30 \text{ V}$ (PW = 15 ms, DC = 30 %), $I_{DQ} = 200 \text{ mA}$, $V_G = -3 \text{ V}$ typical.

2.5

3.0

3.5


Frequency (GHz)

4.0

3.1 - 3.6 GHz 80 W GaN Power Amplifier

Performance Plots - Small Signal (CW)

Conditions unless otherwise specified: $V_D = 28 \text{ V}$, $I_{DQ} = 200 \text{ mA}$, $V_G = -3 \text{ V}$ typical. CW

4.5

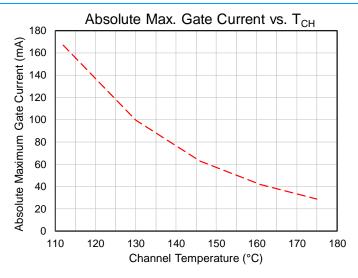
2.5

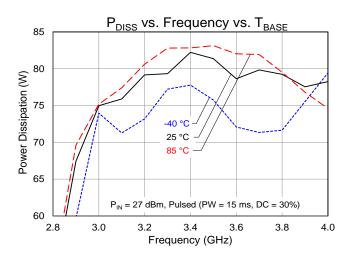
3.5

Frequency (GHz)

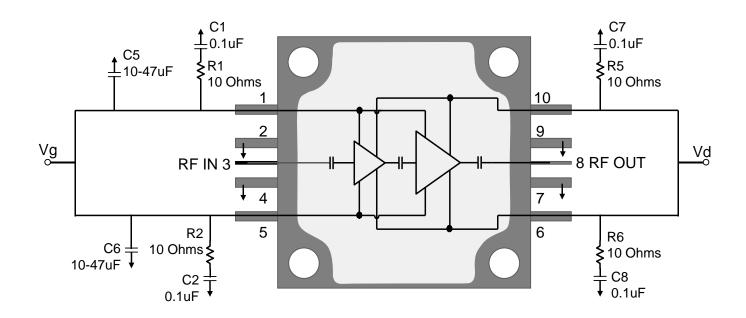
4.0

4.5


Thermal and Reliability Information


Parameter	Test Conditions	Value	Units
Thermal Resistance (θ _{JC}) ⁽¹⁾	V _D = 30 V, I _{DQ} = 200 mA, PW = 15 ms. DC = 30 %	0.783	°C/W
Channel Temperature, T _{CH} (Under RF) (2)	$T_{\text{base}} = 85 ^{\circ}\text{C}$, Freq. = 3.3 GHz, $I_{D_Drive} = 5.4 \text{A}$ $P_{\text{IN}} = 27 \text{dBm}$, $P_{\text{OUT}} = 49 \text{dBm}$, $P_{\text{DISS}} = 83 \text{W}$	150	°C

Notes:


- 1. Thermal resistance is referenced to the back of package (85 °C)
- 2. Refer to the following document: GaN Device Channel Temperature, Thermal Resistance, and Reliability Estimates

Dissipated Power and Maximum Gate Current

Applications Information and Pin Layout

Notes:

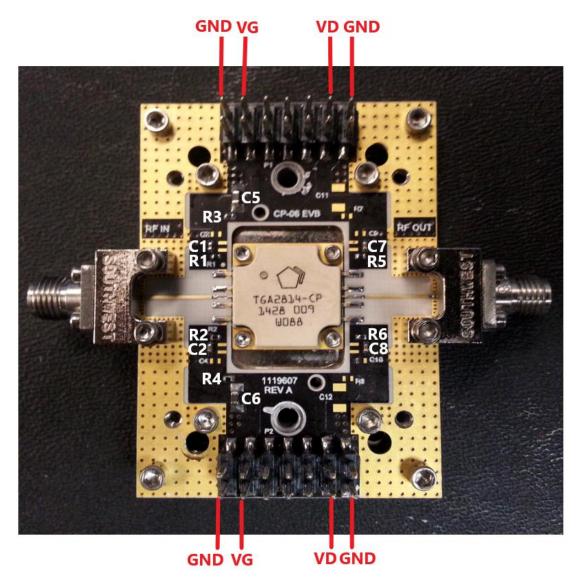
- 1. V_G must be biased from both sides (Pins 1 and 5)
- 2. V_D must be biased from both sides (Pins 6 and 10)

Bias Up Procedure

1. Set I_D limit to 10 A, I_G limit to 40 mA	
2. Apply -5 V to V _G	

- 3. Apply 30 V to $V_{D};$ ensure I_{DQ} is approx. 0 mA
- 4. Adjust V_G until $I_{DQ} = 200 \,\text{mA}$ ($V_G \sim -3 \,\text{V}$ Typ.).
- 5. Turn on RF supply

Bias Down Procedure


- 1. Turn off RF supply
- 2. Reduce V_G to -5 V; ensure I_{DQ} is approx. 0 mA
- 3. Set V_D to 0 V
- 4. Turn off V_D supply
- 5. Turn off V_G supply

Pin Description

Pad No.	Symbol	Description
1,5	V _G	Gate Voltage; Bias network is required; must be biased from both sides; see recommended Application Information above.
2,4,7,9	GND	Must be grounded on the PCB.
3	RFIN	Input; matched to 50 Ω; DC blocked
6,10	VD	Drain voltage; Bias network is required; must be biased from both sides; see recommended Application Information above.
8	RF _{OUT}	Output; matched to 50 Ω; DC blocked.

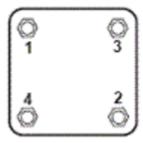
Evaluation Board (EVB) Assembly Drawing

PCB NOTES:

- 1. PCB is made from Rogers 4003C dielectric, 0.008 inch thick, 0.5 oz. copper both sides.
- 2. Both Top and Bottom V_D and V_G must be biased.

Bill of Materials

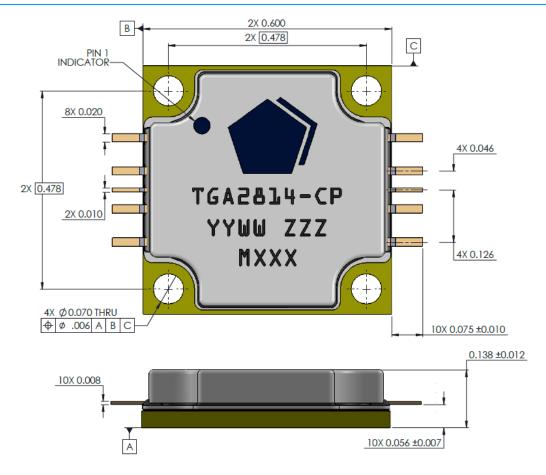
Reference Des.	Value	Description	Manuf.	Part Number
C1, C2, C7, C8	0.1 µF	Cap, 0402, 50 V, 10%, X7R	Various	_
C5, C6	47 uF	Cap, 1206, 50 V, 20%, X5R (10V is OK)	Various	_
R1, R2, R5, R6	10 Ω	Res, 0402, 50 V,5%	Various	_
R3, R4	0 Ω	Res, 0402, Jumper required for the above EVB design	Various	_



TGA2814-CP

3.1 - 3.6 GHz 80 W GaN Power Amplifier

Assembly Notes


- 1. Carefully clean the PC board and package leads with alcohol. Allow it to dry fully.
- 2. To improve the thermal and RF performance, Qorvo recommends attaching a heat sink to the bottom of the PCB and apply thermal compound (Arctic Silver 5 recommended) or 4 mil indium shim between the heat sink and the package.
- 3. (The following is for *information only*. There are many variables in a second level assembly that Qorvo does not control, so Qorvo does not recommend an absolute torque value.) Use screws to attach the component to the heat sink. A suggested torque value is 16 in-oz. for a 0-80 screw. Start with screws finger tight, then torque to 8 in-oz., then torque to final value. Use the following tightening pattern:

4. Apply no-flux solder to each pin of the TGA2814-CP. The component leads should be manually soldered, and the package cannot be subjected to conventional reflow processes. The use of no-clean solder to avoid washing after soldering is recommended.

Mechanical Information

Units: inches

Tolerances: (unless specified)

 $x.xx = \pm 0.01$ $x.xxx = \pm 0.005$ Materials: Base: Copper Leads: Alloy 194

Lid: LCP (liquid crystal polymer)
All metalized features are gold plated

Part is epoxy sealed

Marking:

TGA2814-CP: Part number

YY: Part Assembly year WW: Part Assembly week

ZZZ: Serial Number (unique for all parts within one assembly lot)

MXXX: Batch ID

TGA2814-CP

3.1 – 3.6 GHz 80 W GaN Power Amplifier

Handling Precautions

Parameter	Rating	Standard
ESD – Human Body Model (HBM)	Class 1C	JEDEC Standard JESD22 A114
ESD - Charge Device Model (CDM)	Class C3	JEDEC Standard JESD22-C101
MSL – Moisture Sensitivity Level	N/A	

Solderability

The component leads should be manually soldered, and the package cannot be subjected to conventional reflow processes. Soldering of the component leads is compatible with the latest version of J-STD-020, lead-free solder, 260 °C. The use of no-clean solder to avoid washing after soldering is recommended.

RoHS Compliance

This product is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU. This product also has the following attributes:

- Product uses RoHS Exemption 7c-I to meet RoHS compliance requirements
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>
Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2019 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.