Click to view price, real time Inventory, Delivery \& Lifecycle Information ;

VS-20L15TPBF

Vishay Semiconductors
Schottky Diodes \& Rectifiers 20 Amp 15 Volt

Any questions, please feel free to contact us.
info@kaimte.com

TO-220AC

PRODUCT SUMMARY	
Package	TO-220AC
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	20 A
$\mathrm{~V}_{\mathrm{R}}$	15 V
$\mathrm{~V}_{\mathrm{F}}$ at I_{F}	See Electrical table
I_{RM} max.	600 mA at $100{ }^{\circ} \mathrm{C}$
T_{J} max.	$125^{\circ} \mathrm{C}$
Diode variation	Single die
E_{AS}	10 mJ

Schottky Rectifier, 20 A

FEATURES

- $125^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{J}}$ operation $\left(\mathrm{V}_{\mathrm{R}}<5 \mathrm{~V}\right)$
- Single diode configuration
- Optimized for OR-ing applications
- Ultra low forward voltage drop
- Guard ring for enhanced ruggedness and long term reliability
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Compliant to RoHS Directive 2002/95/EC
- Designed and qualified according to JEDEC-JESD47
- Halogen-free according to IEC 61249-2-21 definition (-N3 only)

DESCRIPTION

The Schottky rectifier module has been optimized for ultra low forward voltage drop specifically for the OR-ing of parallel power supplies. The proprietary barrier technology allows for reliable operation up to 125 ${ }^{\circ} \mathrm{C}$ junction temperature. Typical applications are in parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

MAJOR RATINGS AND CHARACTERISTICS			
SYMBOL	CHARACTERISTICS	VALUES	UNITS
$\mathrm{I}_{\mathrm{F}(\mathrm{AV}}$	Rectangular waveform	20	A
$\mathrm{~V}_{\text {RRM }}$		15	V
$\mathrm{I}_{\text {FSM }}$	$\mathrm{t}_{\mathrm{p}}=5 \mu \mathrm{~s}$ sine	700	A
$\mathrm{~V}_{\mathrm{F}}$	$19 \mathrm{~A}_{\mathrm{pk}}, \mathrm{T}_{J}=125^{\circ} \mathrm{C}$ (typical)	0.25	V
$\mathrm{~T}_{J}$	Range	-55 to 125	${ }^{\circ} \mathrm{C}$

VOLTAGE RATINGS					
PARAMETER	SYMBOL	VS-20L15TPbF	VS-20L15T-N3	UNITS	
Maximum DC reverse voltage	V_{R}	15	15	V	
Maximum working peak reverse voltage	$\mathrm{V}_{\mathrm{RWM}}$				

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average forward current See fig. 5	$\mathrm{I}_{\text {F }}(\mathrm{AV})$	50% duty cycle at $\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$, rectangular waveform		20	A
Maximum peak one cycle non-repetitive surge current See fig. 7	IFSM	$5 \mu \mathrm{~s}$ sine or $3 \mu \mathrm{~s}$ rect. pulse	Following any rated load condition and with rated $V_{\text {RRM }}$ applied	700	
		10 ms sine or 6 ms rect. pulse		330	
Non-repetitive avalanche energy	$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {AS }}=2 \mathrm{~A}, \mathrm{~L}=6 \mathrm{mH}$		10	mJ
Repetitive avalanche current	$\mathrm{I}_{\text {AR }}$	Current decaying linearly to zero in $1 \mu \mathrm{~s}$ Frequency limited by T_{J} maximum $\mathrm{V}_{\mathrm{A}}=1.5 \times \mathrm{V}_{\mathrm{R}}$ typical		2	A

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP.	MAX.	UNITS
Forward voltage drop See fig. 1	$\mathrm{V}_{\mathrm{FM}}{ }^{(1)}$	19 A	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-	0.41	V
		40 A		-	0.52	
		19 A	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	0.25	0.33	
		40 A		0.37	0.50	
Reverse leakage current See fig. 2	$\mathrm{IRM}^{(1)}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=$ Rated V_{R}	-	10	mA
		$\mathrm{T}_{\mathrm{J}}=10{ }^{\circ} \mathrm{C}$		-	600	
Threshold voltage	$\mathrm{V}_{\mathrm{F} \text { (T) }}$	$\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{J}} \mathrm{max}$.		0.182		V
Forward slope resistance	$r_{\text {t }}$					$\mathrm{m} \Omega$
Maximum junction capacitance	$\mathrm{C}_{\text {T }}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}_{\mathrm{DC}}$, (test signal range 100 kHz to 1 MHz) $25^{\circ} \mathrm{C}$		-	2000	pF
Typical series inductance	Ls	Measured lead to lead 5 mm from package body		8	-	nH
Maximum voltage rate of change	dV/dt	Rated $\mathrm{V}_{\text {R }}$		10000		V/ $/ \mathrm{s}$

Note
${ }^{(1)}$ Pulse width $<300 \mu$ s, duty cycle $<2 \%$

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction temperature range	T_{J}		- 55 to 125	${ }^{\circ} \mathrm{C}$
Maximum storage temperature range	$\mathrm{T}_{\text {Stg }}$		- 50 to 150	
Maximum thermal resistance, junction to case	$\mathrm{R}_{\text {thJc }}$	DC operation See fig. 4	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Typical thermal resistance, case to heatsink	$\mathrm{R}_{\text {thcs }}$	Mounting surface, smooth and greased (for TO-220)	0.50	
Maximum thermal resistance, junction to ambient	$\mathrm{R}_{\text {thJA }}$	DC operation (for D^{2} PAK)	40	
Approximate weight			2	g
			0.07	oz.
Mounting torque $\quad \begin{array}{r}\text { minimum } \\ \text { maximum }\end{array}$		Non-lubricated threads	6 (5)	$\mathrm{kgf} \cdot \mathrm{cm}$ (lbf • in)
			12 (10)	
Marking device		Case style TO-220AC	20L15T	

Fig. 1 - Maximum Forward Voltage Drop Characteristics

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

Fig. 4 - Maximum Thermal Impedance $\mathrm{Z}_{\text {thJc }}$ Characteristics

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$ - Average Forward Current (A)
Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

Fig. 6 - Forward Power Loss Characteristics

Fig. 7 - Maximum Non-Repetitive Surge Current

Fig. 8 - Unclamped Inductive Test Circuit

Note

${ }^{(1)}$ Formula used: $T_{C}=T_{J}-\left(P d+P d_{R E V}\right) \times R_{\text {thJC }}$;
$\mathrm{Pd}=$ Forward power loss $=\mathrm{I}_{\mathrm{F}(\mathrm{AV})} \times \mathrm{V}_{\mathrm{FM}}$ at $\left(\mathrm{I}_{\mathrm{F}(\mathrm{AV}} / \mathrm{D}\right)$ (see fig. 6);
$\mathrm{Pd}_{\mathrm{REV}}=$ Inverse power loss $=\mathrm{V}_{\mathrm{R} 1} \times \mathrm{I}_{\mathrm{R}}(1-\mathrm{D}) ; \mathrm{I}_{\mathrm{R}}$ at $\mathrm{V}_{\mathrm{R} 1}=80 \%$ rated V_{R}

ORDERING INFORMATION TABLE

1 - Vishay Semiconductors product
2 - Current rating (20 = 20 A)
3 - Schottky "L" series
4 - Voltage code (15 = 15 V)
5 - Package
T = TO-220
6 - Environmental digit

- $\mathrm{PbF}=$ Lead (Pb)-free and RoHS compliant
- -N3 = Halogen-free, RoHS compliant, and totally lead (Pb)-free

ORDERING INFORMATION (Example)			
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION
VS-20L15TPbF	50	1000	Antistatic plastic tube
VS-20L15T-N3	50	1000	Antistatic plastic tube

LINKS TO RELATED DOCUMENTS		
Dimensions		$\underline{w w w . v i s h a y . c o m / d o c ? 95221 ~}$
Part marking information	TO-220AC PbF	$\underline{w w w . v i s h a y . c o m / d o c ? 95224 ~}$
	TO-220AC -N3	www.vishay.com/doc?95068

TO-220AC

DIMENSIONS in millimeters and inches

SYMBOL	MILLIMETERS		INCHES		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	4.25	4.65	0.167	0.183	
A1	1.14	1.40	0.045	0.055	
A2	2.56	2.92	0.101	0.115	
b	0.69	1.01	0.027	0.040	
b1	0.38	0.97	0.015	0.038	4
b2	1.20	1.73	0.047	0.068	
b3	1.14	1.73	0.045	0.068	4
c	0.36	0.61	0.014	0.024	
c1	0.36	0.56	0.014	0.022	4
D	14.85	15.25	0.585	0.600	3
D1	8.38	9.02	0.330	0.355	
D2	11.68	12.88	0.460	0.507	6
E	10.11	10.51	0.398	0.414	3,6

SYMBOL	MILLIMETERS		INCHES		NOTES		
	MIN.	MAX.	MIN.	MAX.			
E1	6.86	8.89	0.270	0.350	6		
E2	-	0.76	-	0.030	7		
e	2.41	2.67	0.095	0.105			
e1	4.88	5.28	0.192	0.208			
H1	6.09	6.48	0.240	0.255	6,7		
L	13.52	14.02	0.532	0.552			
L1	3.32	3.82	0.131	0.150	2		
L3	1.78	2.13	0.070	0.084			
L4	0.76	1.27	0.030	0.050	2		
\varnothing P	3.54	3.73	0.139	0.147			
Q	2.60	3.00	0.102	0.118			
θ	90° to 93°	90° to 93°					

Notes

${ }^{(1)}$ Dimensioning and tolerancing as per ASME Y14.5M-1994
(2) Lead dimension and finish uncontrolled in L1
(3) Dimension D, D1 and E do not include mold flash. Mold flash shall not exceed $0.127 \mathrm{~mm}\left(0.005{ }^{\prime \prime}\right)$ per side. These dimensions are measured at the outermost extremes of the plastic body
(4) Dimension b1, b3 and c1 apply to base metal only
(5) Controlling dimension: inches
(6) Thermal pad contour optional within dimensions E, H1, D2 and E1
(7) Dimension E2 $\times \mathrm{H} 1$ define a zone where stamping and singulation irregularities are allowed
${ }^{(8)}$ Outline conforms to JEDEC TO-220, D2 (minimum) where dimensions are derived from the actual package outline

Disclaimer

Abstract

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Vishay:
20L15T VS-20L15TPBF

