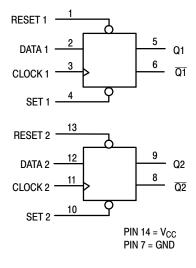
Dual D Flip-Flop with Set and Reset

High-Performance Silicon-Gate CMOS


The MC74HC74A is identical in pinout to the LS74. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

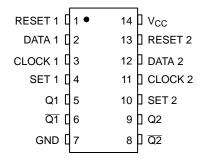
This device consists of two D flip-flops with individual Set, Reset, and Clock inputs. Information at a D-input is transferred to the corresponding Q output on the next positive going edge of the clock input. Both Q and \overline{Q} outputs are available from each flip-flop. The Set and Reset inputs are asynchronous.

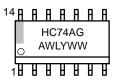
Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the JEDEC Standard No. 7.0 A Requirements
- Chip Complexity: 128 FETs or 32 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

LOGIC DIAGRAM

ON Semiconductor®


http://onsemi.com



SOIC-14 NB D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G

PIN ASSIGNMENT

MARKING DIAGRAMS

SOIC-14 NB

TSSOP-14

A = Assembly Location

L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G or = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

FUNCTION TABLE

Inputs				Out	puts
Set	Reset	Clock	Data	Ø	Q
L	Н	Χ	Χ	Н	L
н	L	Χ	Χ	L	Н
L	L	Χ	X	H*	H*
н	Н	\mathcal{L}	Н	Н	L
н	Н	\mathcal{L}	L	L	Н
н	Н	L	Χ	No CI	nange
н	Н	Н	X	No CI	nange
Н	Н	~	Χ		nange

^{*}Both outputs will remain high as long as Set and Reset are low, but the output states are unpredictable if Set and Reset go high simultaneously.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V_{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V_{CC} + 0.5	V
I _{in}	DC Input Current, per Pin	±20	mA
l _{out}	DC Output Current, per Pin	±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	±50	mA
P _D	Power Dissipation in Still Air, SOIC Package†	500	mW
	TSSOP Package†	450	
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds		°C
	(SOIC or TSSOP Package)	260	
		300	

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or $V_{\rm CC}$). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating: SOIC Package: -7 mW/°C from 65° to 125°C

TSSOP Package: -6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-55	+125	°C
t _r , t _f	Input Rise and Fall Time $V_{CC} = 2.0 \text{ V}$	0	1000	ns
	(Figures 1, 2, 3) $V_{CC} = 3.0 \text{ V}$	0	600	
	$V_{CC} = 4.5 V$	0	500	
	$V_{CC} = 6.0 \text{ V}$	0	400	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	V _{CC} V	–55 to 25°C	≤ 85 °C	≤ 125°C	Unit
V _{IH}	Minimum High–Level Input	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$	2.0 3.0	1.5 2.1	1.5	1.5	V
	Voltage	$ I_{\text{out}} \leq 20 \mu\text{A}$	3.0 4.5	3.15	2.1 3.15	2.1 3.15	
			6.0	4.2	4.2	4.2	
V _{IL}	Maximum Low–Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 3.0	0.5 0.9	0.5 0.9	0.5 0.9	V
			4.5 6.0	1.35 1.8	1.35 1.8	1.35 1.8	
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5	1.9 4.4	1.9 4.4	1.9 4.4	V
	Voltage		6.0	5.9	5.9	5.9	
		$V_{in} = V_{IH} \text{ or } V_{IL} I_{out} \leq 2.4 \text{ mA}$	3.0	2.48	2.34	2.2	
		$\begin{aligned} I_{out} &\leq 4.0 \text{ mA} \\ I_{out} &\leq 5.2 \text{ mA} \end{aligned}$	4.5 6.0	3.98 5.48	3.84 5.34	3.7 5.2	
V _{OL}	Maximum Low–Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5	0.1 0.1	0.1 0.1	0.1 0.1	V
	Voltage		6.0	0.1	0.1	0.1	
		$V_{in} = V_{IH} \text{ or } V_{IL} $ $ I_{out} \le 2.4 \text{ mA}$ $ I_{out} \le 4.0 \text{ mA}$	3.0 4.5	0.26 0.26	0.33 0.33	0.4 0.4	
		$ I_{out} \le 5.2 \text{ mA}$	6.0	0.26	0.33	0.4	
l _{in}	Maximum Input Leakage Current	$V_{in} = V_{CC}$ or GND	6.0	±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	6.0	2.0	20	80	μΑ

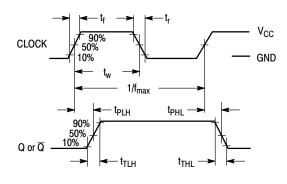
AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF, Input t_r = t_f = 6.0 ns)

			Guaranteed Limit		mit	
Symbol	Parameter	V _{CC} V	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 4)	2.0 3.0 4.5 6.0	6.0 15 30 35	4.8 10 24 28	4.0 8.0 20 24	MHz
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Clock to Q or Q (Figures 1 and 4)	2.0 3.0 4.5 6.0	100 75 20 17	125 90 25 21	150 120 30 26	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Set or Reset to Q or Q (Figures 2 and 4)	2.0 3.0 4.5 6.0	105 80 21 18	130 95 26 22	160 130 32 27	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 4)	2.0 3.0 4.5 6.0	75 30 15 13	95 40 19 16	110 55 22 19	ns
C _{in}	Maximum Input Capacitance		10	10	10	pF

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Flip-Flop)*	32	pF

^{*} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

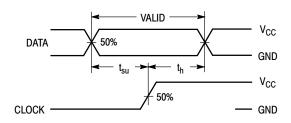
TIMING REQUIREMENTS (Input $t_f = t_f = 6.0 \text{ ns}$)


			Gu	aranteed Li	mit	
Symbol	Parameter	v _{cc} v	–55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{su}	Minimum Setup Time, Data to Clock (Figure 3)	2.0 3.0 4.5 6.0	80 35 16 14	100 45 20 17	120 55 24 20	ns
t _h	Minimum Hold Time, Clock to Data (Figure 3)	2.0 3.0 4.5 6.0	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	ns
t _{rec}	Minimum Recovery Time, Set or Reset Inactive to Clock (Figure 2)	2.0 3.0 4.5 6.0	8.0 8.0 8.0 8.0	8.0 8.0 8.0 8.0	8.0 8.0 8.0 8.0	ns
t _w	Minimum Pulse Width, Clock (Figure 1)	2.0 3.0 4.5 6.0	60 25 12 10	75 30 15 13	90 40 18 15	ns
t _w	Minimum Pulse Width, Set or Reset (Figure 2)	2.0 3.0 4.5 6.0	60 25 12 10	75 30 15 13	90 40 18 15	ns
t _r , t _f	Maximum Input Rise and Fall Times (Figures 1, 2, 3)	2.0 3.0 4.5 6.0	1000 800 500 400	1000 800 500 400	1000 800 500 400	ns

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HC74ADG	SOIC-14 NB (Pb-Free)	55 Units / Rail
NLV74HC74ADG*	SOIC-14 NB (Pb-Free)	55 Units / Rail
MC74HC74ADR2G	SOIC-14 NB (Pb-Free)	2500 / Tape & Reel
NLV74HC74ADR2G*	SOIC-14 NB (Pb-Free)	2500 / Tape & Reel
MC74HC74ADTR2G	TSSOP-14 (Pb-Free)	2500 / Tape & Reel
NLV74HC74ADTR2G*	TSSOP-14 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.


SWITCHING WAVEFORMS

SET OR RESET $t_{\rm W}$ $t_{\rm PHL}$ $t_{\rm PHL}$ $t_{\rm rec}$ $t_{\rm rec}$ $t_{\rm CLOCK}$ $t_{\rm CLOCK}$ $t_{\rm CLOCK}$ $t_{\rm CLOCK}$ $t_{\rm CLOCK}$ $t_{\rm CLOCK}$

Figure 1.

Figure 2.

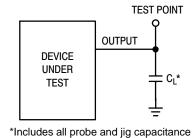


Figure 3.

Figure 4.

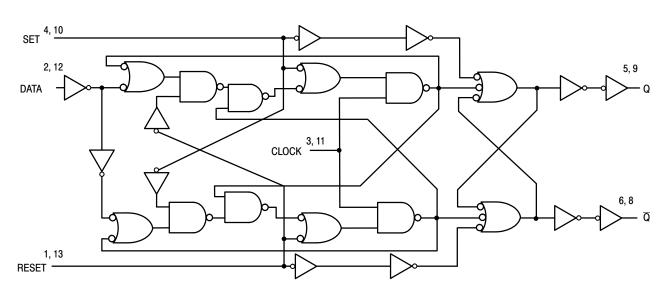
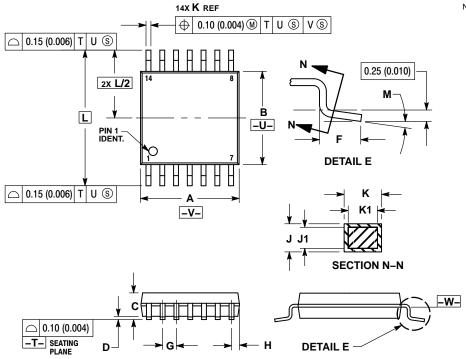



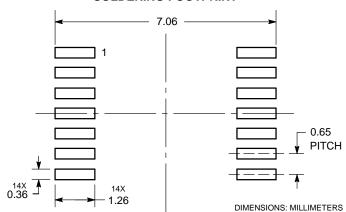
Figure 5. EXPANDED LOGIC DIAGRAM

PACKAGE DIMENSIONS

TSSOP-14 CASE 948G **ISSUE B**

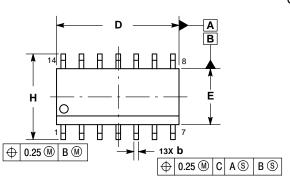
- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 - DIMENSIONING AND TOLERANCING FER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 DIMENSION B DOES NOT INCLUDE.

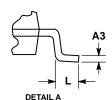

 - EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

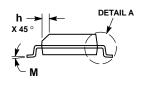
 - REFERENCE ONLY.

 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.


	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026	BSC	
Н	0.50	0.60	0.020	0.024	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40		0.252 BSC		
М	0 °	8 °	0°	8 °	

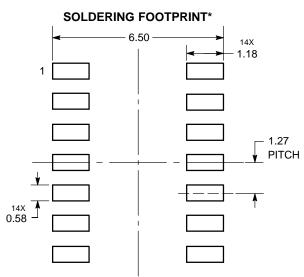
SOLDERING FOOTPRINT




PACKAGE DIMENSIONS

SOIC-14 NB CASE 751A-03 ISSUE K

е


IOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION
- MAXIMUM MATERIAL CONDITION.

 4. DIMENSIONS D AND E DO NOT INCLUDE
 MOLD PROTEUSIONS
- MOLD PROTRUSIONS.

 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
е	1.27	BSC	0.050	BSC
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0 °	7°	0 °	7°

C SEATING PLANE

DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Furone, Middle Fast and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MC74HC74ADG MC74HC74ADR2G MC74HC74ADTR2G