ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]ON Semiconductor ${ }^{\text {® }}$

FDMQ8203

GreenBridge ${ }^{\text {TM }}$ Series of High-Efficiency Bridge Rectifiers Dual N-Channel and Dual P-Channel PowerTrench ${ }^{\circledR}$ MOSFET
N -Channel: $100 \mathrm{~V}, 6 \mathrm{~A}, 110 \mathrm{~m} \Omega$ P-Channel: - $\mathbf{- 8 0} \mathrm{V},-6 \mathrm{~A}, 190 \mathrm{~m} \Omega$

Features

Q1/Q4: N-Channel

- $\operatorname{Max} \mathrm{r}_{\mathrm{DS}(\text { on })}=110 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$

■ Max $r_{\mathrm{DS}(\text { on })}=175 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.4 \mathrm{~A}$
Q2/Q3: P-Channel

- $\operatorname{Max} r_{\mathrm{DS}(o n)}=190 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2.3 \mathrm{~A}$
- Max $r_{\text {DS(on) }}=235 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2.1 \mathrm{~A}$
- Substantial efficiency benefit in PD solutions
- RoHS Compliant

General Description
This quad mosfet solution provides ten-fold improvement in power dissipation over diode bridge.

Application

- High-Efficiency Bridge Rectifiers

Top

MLP 4.5x5
MLP

MOSFET Maximum Ratings $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter				Q1/Q4	Q2/Q3	Units
$\mathrm{V}_{\text {DS }}$	Drain to Source Voltage				100	-80	V
V_{GS}	Gate to Source Voltage				± 20	± 20	V
${ }_{\text {I }}$	Drain Current	-Continuous (Package limited)	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		6	-6	A
		-Continuous (Silicon limited)	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		10	-10	
		-Continuous	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	(Note 1a)	3.4	-2.6	
		-Pulsed			12	-10	
P_{D}	Power Dissip	n for Single Operation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		22	37	W
	Power Dissip	for Dual Operation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	(Note 1a)	2.5		
$\mathrm{T}_{\mathrm{J},}, \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range				$-55 \text { to }+150$		${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\theta \mathrm{JA}}$	Thermal Resistance, Junction to Ambient	(Note 1a)	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JA}}$	Thermal Resistance, Junction to Ambient	(Note 1b)	160	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMQ8203	FDMQ8203	MLP4.5x5	13 "	12 mm	3000 units

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Type	Min	Typ	Max	Units
Off Characteristics							
$B V_{\text {DSS }}$	Drain to Source Breakdown Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Q1/Q4 } \\ & \text { Q2/Q3 } \end{aligned}$	$\begin{gathered} 100 \\ -80 \end{gathered}$			V
$\frac{\Delta \mathrm{BV}_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$ $\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Q1/Q4 } \\ & \text { Q2/Q3 } \end{aligned}$		$\begin{gathered} 72 \\ -79 \end{gathered}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=80 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=-64 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Q1/Q4 } \\ & \text { Q2/Q3 } \end{aligned}$			$\begin{gathered} 1 \\ -1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{I}_{\text {GSS }}$	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	$\begin{aligned} & \text { Q1/Q4 } \\ & \text { Q2/Q3 } \end{aligned}$			$\begin{aligned} & \pm 100 \\ & \pm 100 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$

On Characteristics

$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate to Source Threshold Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \quad \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Q1/Q4 } \\ & \text { Q2/Q3 } \end{aligned}$	$\begin{gathered} \hline 2 \\ -1 \end{gathered}$	$\begin{gathered} \hline 3 \\ -1.6 \end{gathered}$	$\begin{gathered} 4 \\ -3 \end{gathered}$	V
$\frac{\Delta \mathrm{V}_{\mathrm{GS}(\text { th })}}{\Delta \mathrm{T}_{\mathrm{J}}}$	Gate to Source Threshold Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$ $\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Q1/Q4 } \\ & \text { Q2/Q3 } \end{aligned}$		$\begin{gathered} -8 \\ 5 \end{gathered}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{r}_{\text {DS(on) }}$	Drain to Source On Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.4 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$	Q1/Q4		$\begin{gathered} \hline 85 \\ 118 \\ 147 \end{gathered}$	$\begin{aligned} & 110 \\ & 175 \\ & 191 \end{aligned}$	$\mathrm{m} \Omega$
		$\begin{aligned} & \mathrm{V}_{G S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2.3 \mathrm{~A} \\ & \mathrm{~V}_{G S}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2.1 \mathrm{~A} \\ & \mathrm{~V}_{G S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2.3 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$	Q2/Q3		$\begin{aligned} & 161 \\ & 188 \\ & 273 \end{aligned}$	$\begin{aligned} & 190 \\ & 235 \\ & 323 \end{aligned}$	
$\mathrm{gFS}^{\text {S }}$	Forward Transconductance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2.3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Q1/Q4 } \\ & \text { Q2/Q3 } \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \end{aligned}$		S

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	Q1/Q4: $\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHZ}$ Q2/Q3: $\mathrm{V}_{\mathrm{DS}}=-40 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHZ}$	$\begin{aligned} & \text { Q1/Q4 } \\ & \text { Q2/Q3 } \end{aligned}$	$\begin{aligned} & 158 \\ & 639 \end{aligned}$	$\begin{aligned} & 210 \\ & 850 \end{aligned}$	pF
Coss	Output Capacitance		$\begin{aligned} & \text { Q1/Q4 } \\ & \text { Q2/Q3 } \end{aligned}$	$\begin{aligned} & 41 \\ & 46 \end{aligned}$	55 65	pF
$\mathrm{Crss}^{\text {r }}$	Reverse Transfer Capacitance		$\begin{aligned} & \text { Q1/Q4 } \\ & \text { Q2/Q3 } \end{aligned}$	$\begin{aligned} & 2.6 \\ & 24 \end{aligned}$	5 40	pF

Switching Characteristics

$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time	Q1/Q4: $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{aligned}$ Q2/Q3: $V_{D D}=-40 \mathrm{~V}, I_{D}=-2.3 \mathrm{~A}$, $V_{G S}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega$	$\begin{array}{\|l\|} \hline \text { Q1/Q4 } \\ \text { Q2/Q3 } \end{array}$	3.8 4.7	10 10	ns
t_{r}	Rise Time		$\begin{array}{\|l\|} \hline \text { Q1/Q4 } \\ \text { Q2/Q3 } \\ \hline \end{array}$	$\begin{aligned} & 1.3 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time		$\begin{array}{\|l\|} \hline \text { Q1/Q4 } \\ \text { Q2/Q3 } \end{array}$	7.5 22	15 35	ns
t_{f}	Fall Time		$\begin{array}{\|l\|} \hline \text { Q1/Q4 } \\ \text { Q2/Q3 } \end{array}$	1.9 2.7	10 10	ns
Q_{g}	Total Gate Charge	VGS $=0 \mathrm{~V}$ to 10 V VGS $=0 \mathrm{~V}$ to -10 V Q1/Q4:	$\begin{array}{\|l\|} \hline \text { Q1/Q4 } \\ \text { Q2/Q3 } \end{array}$	2.9 13	5 19	nC
Q_{g}	Total Gate Charge	$\mathrm{VGS}=0 \mathrm{~V}$ to 5 VVGS $=0 \mathrm{~V}$ to -4.5 V$\mathrm{V} \mathrm{DD}=50 \mathrm{~V}$, $\mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$	$\begin{array}{\|l\|} \hline \text { Q1/Q4 } \\ \text { Q2/Q3 } \end{array}$	$\begin{aligned} & 1.6 \\ & 6.4 \end{aligned}$	$\begin{gathered} \hline 3 \\ 10 \end{gathered}$	nC
Qgs	Gate to Source Gate Charge	Q2/Q3: $V_{D D}=-40 \mathrm{~V},$	$\begin{array}{\|l\|} \hline \text { Q1/Q4 } \\ \text { Q2/Q3 } \\ \hline \end{array}$	$\begin{aligned} & \hline 0.8 \\ & 1.6 \end{aligned}$		nC
Qgd	Gate to Drain "Miller" Charge		$\begin{array}{\|l\|} \hline \text { Q1/Q4 } \\ \text { Q2/Q3 } \\ \hline \end{array}$	$\begin{aligned} & \hline 0.8 \\ & 2.6 \\ & \hline \end{aligned}$		nC

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Type	Min	Typ	Max	Units
Drain-Source Diode Characteristics							
$V_{\text {SD }}$	Source to Drain Diode Forward Voltage	$V_{G S}=0 \mathrm{~V}, I_{S}=3 \mathrm{~A}$ $($ Note 2) $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-2.3 \mathrm{~A}$ $($ Note 2)	$\begin{aligned} & \text { Q1/Q4 } \\ & \text { Q2/Q3 } \end{aligned}$		$\begin{gathered} 0.86 \\ -0.82 \end{gathered}$	$\begin{gathered} 1.3 \\ -1.3 \end{gathered}$	V
t_{rr}	Reverse Recovery Time	$\begin{aligned} & \text { Q1/Q4: } \\ & \mathrm{I}_{\mathrm{F}}=3 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \text { Q2/Q3: } \\ & \mathrm{I}_{\mathrm{F}}=-2.3 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\begin{aligned} & \text { Q1/Q4 } \\ & \text { Q2/Q3 } \end{aligned}$		$\begin{aligned} & 32 \\ & 26 \end{aligned}$	$\begin{aligned} & 52 \\ & 42 \end{aligned}$	ns
$\mathrm{Q}_{\text {rr }}$	Reverse Recovery Charge		$\begin{aligned} & \text { Q1/Q4 } \\ & \text { Q2/Q3 } \end{aligned}$		$\begin{aligned} & 21 \\ & 26 \end{aligned}$	$\begin{aligned} & 34 \\ & 42 \end{aligned}$	nC

Notes:
1: $R_{\theta J A}$ is determined with the device mounted on a $1 \mathrm{in}^{2}$ pad 2 oz copper pad on a $1.5 \times 1.5 \mathrm{in}$. board of FR-4 material. $R_{\theta J C}$ is guaranteed by design while $R_{\theta C A}$ is determined by the user's board design.

a. $50^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad of 2 oz copper, the board designed Q1+Q3 or Q2+Q4.

b. $160{ }^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad of 2 oz copper, the board designed Q1+Q3 or Q2+Q4

2: Pulse Test: Pulse Width $<300 \mu$ s, Duty cycle $<2.0 \%$.

Typical Characteristics (N-Channel) $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 1. On Region Characteristics

Figure 3. Normalized On Resistance vs Junction Temperature

Figure 5. Transfer Characteristics

Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

Figure 4. On-Resistance vs Gate to Source Voltage

Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics (N-Channel) $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 7. Gate Charge Characteristics

Figure 9. Forward Bias Safe Operating Area

Figure8. CapacitancevsDrain to Source Voltage

Typical Characteristics (P-Channel) $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unlenss otherwise noted

Figure 10. On-Region Characteristics

Figure 12. Normalized On-Resistance vs Junction Temperature

Figure 14. Transfer Characteristics

Figure 11. Normalized on-Resistance vs Drain Current and Gate Voltage

Figure 13. On-Resistance vs Gate to Source Voltage

Figure 15. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics (P-Channel) $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ unlenss otherwise noted

Figure 16. Gate Charge Characteristics

Figure 17. Capacitance vs Drain to Source Voltage

Figure 18. Forward Bias Safe Operating Area

Typical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unlenss otherwise noted

Figure 19. Single Pulse Maximum Power Dissipation

Figure 20. Junction-to-Ambient Transient Thermal Response Curve

Dimensional Outline and Pad Layout

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:
onsemi:
FDMQ8203

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

