Kaimeite Electronic (HK) Co., Limited
First choice One-Stop Mixed Distributor for World-Class manufacturer Email: info@kaimte.com Website: www.kaimte.com

Click to view price, real time Inventory, Delivery & Lifecycle Information;

STD16NF06T4

STMicroelectronics

MOSFET N Ch 60V 0.060 Ohm 16A

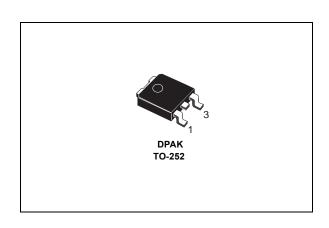
Any questions, please feel free to contact us. info@kaimte.com

STD16NF06

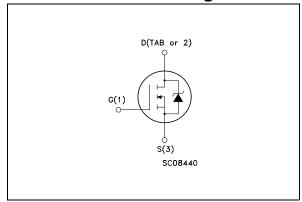
N-Channel 60V - 0.060Ω - 16A - DPAK STripFET™ II Power MOSFET

General features

Туре	V _{DSS}	R _{DS(on)}	I _D
STD16NF06	60V	<0.070Ω	16A


- Typical $R_{DS(on)} = 0.060\Omega$
- Exceptional dv/dt Capability
- 100% Avalanche Tested
- Application Oriented Characterization

Description


This Power MOSFET is the latest development of STMicroelectronis unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility

Applications

- Audio Amplifiers
- Power Tools
- Automotive Environment

Internal schematic diagram

Order codes

Part Number	Marking	king Package	
STD16NF06T4	D16NF06	06 TO-252 TAPE & REEL	
			Rev 1

January 2006 1/11

1 Electrical ratings STD16NF06

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0V)	60	V
V _{DGR}	Drain-gate Voltage (R _{GS} = 20 k Ω)	60	V
V _{GS}	Gate-Source Voltage	± 20	V
I _D	Drain Current (continuous) at T _C = 25°C	16	Α
I _D	Drain Current (continuous) at T _C = 100°C	11	Α
I _{DM} Note 4	Drain Current (pulsed)	64	Α
P _{TOT}	Total Dissipation at T _C = 25°C	40	W
	Derating Factor	0.27	W/°C
dv/dt	Peak Diode Recovery voltage slope	10.5	V/ns
EAS	Single Pulse Avalanche Energy	178	mJ
T _J T _{stg}	Operating Junction Temperature Storage Temperature	-55 to 175	°C

Table 2. Thermal data

R _{thJC}	Thermal Resistance Junction-case Max	3.75	°C/W
R _{thJA}	Thermal Resistance Junction-amb Max	100	°C/W
T _I	Maximum Lead Temperature For Soldering Purpose	275	°C

STD16NF06 2 Electrical characteristics

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 3. On/off states

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	I _D = 250μA	V _{GS} = 0	60			V
I _{DSS}	Zero Gate Voltage Drain	V _{DS} = Max Rating	J			1	μΑ
DSS	Current (V _{GS} = 0)	V _{DS} = Max Rating	_J T _C =125°C			10	μΑ
I _{GSS}	Gate Body Leakage Current (V _{DS} = 0)	V _{GS} = ±20V				±100	μΑ
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250μA	2			٧
R _{DS(on)}	Static Drain-Source On Resistance	V _{GS} = 10V	I _D = 8A		0.060	0.070	Ω

Table 4. Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} Note 5	Forward Transconductance	$V_{DS} = 25V$ $I_D = 8A$		6		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 15V, f = 1MHz, V _{GS} = 0		400 103 41.5		pF pF pF
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V_{DD} = 30 I_{D} = 16A V_{GS} = 10V Figure 14 on page 7		14.1 2.8 5.4		nC nC nC

Table 5. Switching times

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time Rise Time	V_{DD} = 30V, I_D = 8A, R_G = 4.7 Ω , V_{GS} = 10V Figure 13 on page 7		4 15		ns ns
t _{d(off)}	Off voltage Rise Time FallTime	V_{DD} = 30V, I_{D} = 8A, R_{G} = 4.7 Ω , V_{GS} = 10V Figure 15 on page 7		16 5.5		ns ns

57

2 Electrical characteristics STD16NF06

Table 6. Source drain diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} Note 4	Source-drain Current (pulsed)				16 64	A A
V _{SD} Note 5	Forward on Voltage	$I_{SD} = 8A$ $V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 16A, di/dt = 100A/µs, V_{DD} = 20V, T_{J} =150°C Figure 15 on page 7		49 78 3.2		ns μC A

Note: 1 Value limited by wire bonding

2 Garanted when external Rg=4.7 Ω and $t_{\rm f}$ < $t_{\rm fmax}.$

- 3 Starting $T_J = 25$ °C, $I_D = 19A$, $V_{DD} = 18V$
- 4 Pulse width limited by safe operating area
- 5 Pulsed: pulse duration = 300µs, duty cycle 1.5%

STD16NF06 2 Electrical characteristics

2.1 Electrical chraracteristics (curves)

Figure 1. Safe Operating Area

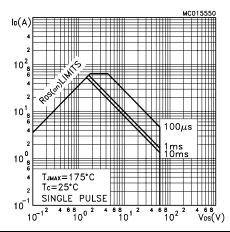


Figure 2. Thermal Impedance

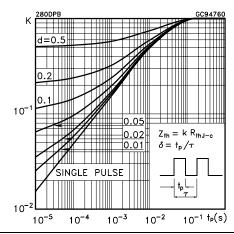
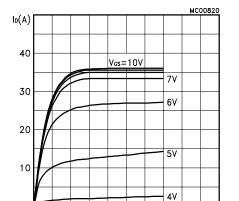



Figure 3. Output Characteristics

 $V_{DS}(V)$

Figure 4. Transfer Characteristics

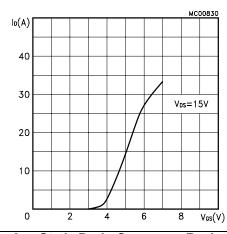


Figure 5. Transconductance

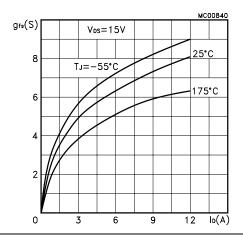
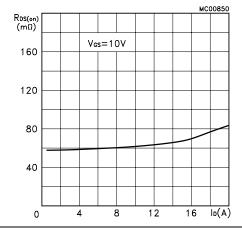
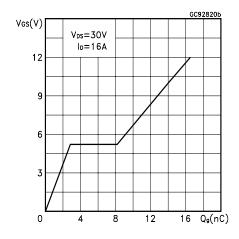




Figure 6. Static Drain-Source on Resistance

2 Electrical characteristics STD16NF06

Figure 7. Gate Charge vs Gate-Source Voltage Figure 8. Capacitance Variations

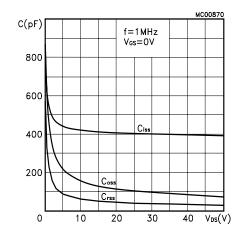
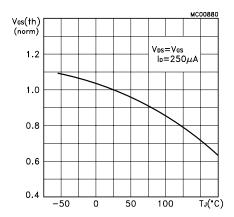



Figure 9. Normalized Gate Threshold Voltage Figure 10. Normalized on Resistance vs vs Temperature Temperature

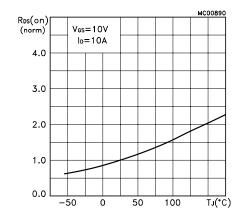
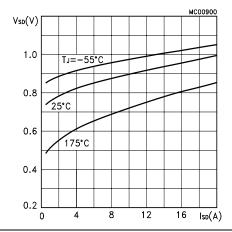
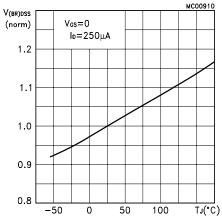
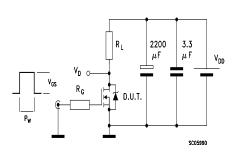




Figure 11. Source-drain Diode Forward Characteristics

Figure 12. Normalized Breakdown Voltage vs Temperature



STD16NF06 3 Test circuits

3 Test circuits

Figure 13. Switching Times Test Circuit For Resistive Load

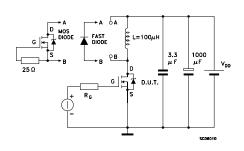
Figure 14. Gate Charge Test Circuit

12V 47KΩ 1KΩ

V₁ = 20V = V_{GMAX}

V₂

2200 2.7KΩ V_G


47KΩ V_G

1KΩ

55,000,000

Figure 15. Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 17. Unclamped Inductive Load Test Circuit

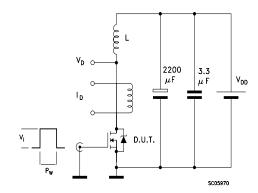
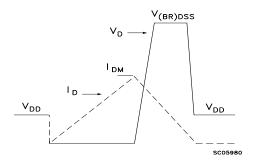
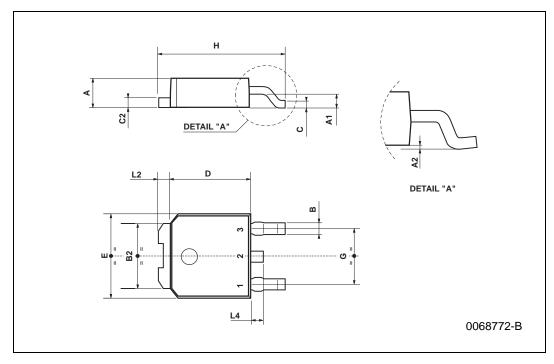



Figure 16. Unclamped Inductive Waveform



4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

TO-252 (DPAK) MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.9	0.025		0.035
B2	5.2		5.4	0.204		0.212
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
E	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
Н	9.35		10.1	0.368		0.397
L2		0.8			0.031	
L4	0.6		1	0.023		0.039

5//

5 Revision History STD16NF06

5 Revision History

Date	Revision	Description of changes
10-Jan-2006	1	First release

STD16NF06 5 Revision History

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STD16NF06T4