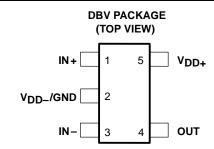
Kaimeite Electronic (HK) Co., Limited
First choice One-Stop Mixed Distributor for World-Class manufacturer Email: info@kaimte.com Website: www.kaimte.com

# Click to view price, real time Inventory, Delivery & Lifecycle Information;

# TLV2231IDBVR


## Texas instruments

Operational Amplifiers - Op Amps Rail-to-Rail Op Amp

Any questions, please feel free to contact us. info@kaimte.com

SLOS158D – JUNE 1996 – REVISED APRIL 2001

- Output Swing Includes Both Supply Rails
- Low Noise . . . 15 nV/ $\sqrt{\text{Hz}}$  Typ at f = 1 kHz
- Low Input Bias Current . . . 1 pA Typ
- Fully Specified for Single-Supply 3-V and 5-V Operation
- Common-Mode Input Voltage Range Includes Negative Rail
- High Gain Bandwidth . . . 2 MHz at
   V<sub>DD</sub> = 5 V With 600-Ω Load
- High Slew Rate . . . 1.6 V/μs at V<sub>DD</sub> = 5 V
- Wide Supply Voltage Range 2.7 V to 10 V
- Macromodel Included



## description

The TLV2231 is a single low-voltage operational amplifier available in the SOT-23 package. It offers 2 MHz of bandwidth and 1.6 V/ $\mu$ s of slew rate for applications requiring good ac performance. The device exhibits rail-to-rail output performance for increased dynamic range in single or split supply applications. The TLV2231 is fully characterized at 3 V and 5 V and is optimized for low-voltage applications.

The TLV2231, exhibiting high input impedance and low noise, is excellent for small-signal conditioning of high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels combined with 3-V operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). The device can also drive  $600-\Omega$  loads for telecom applications.

With a total area of 5.6mm<sup>2</sup>, the SOT-23 package only requires one-third the board space of the standard 8-pin SOIC package. This ultra-small package allows designers to place single amplifiers very close to the signal source, minimizing noise pick-up from long PCB traces. TI has also taken special care to provide a pinout that is optimized for board layout (see Figure 1). Both inputs are separated by GND to prevent coupling or leakage paths. The OUT and IN- terminals are on the same end of the board for providing negative feedback. Finally, gain setting resistors and the decoupling capacitor are easily placed around the package.

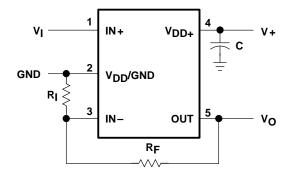



Figure 1. Typical Surface Mount Layout for a Fixed-Gain Noninverting Amplifier



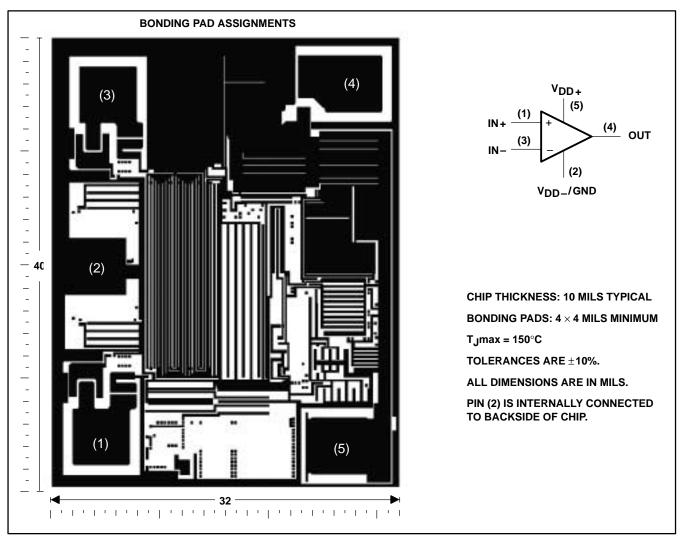
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Advanced LinCMOS is a trademark of Texas Instruments.



POST OFFICE BOX 655303 DALLAS, TEXAS 75265

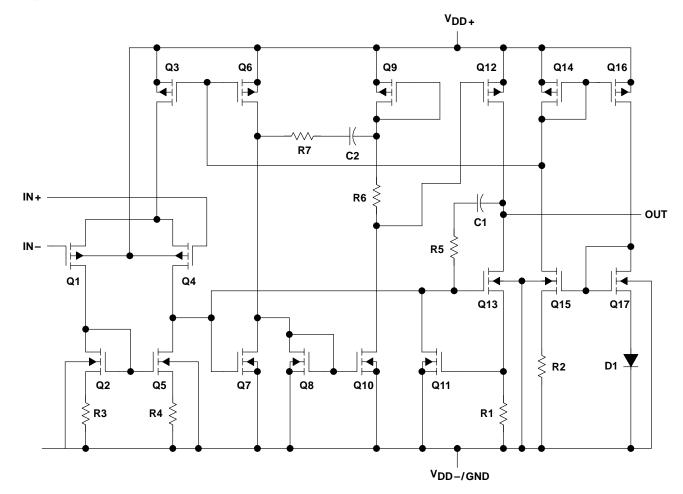
SLOS158D - JUNE 1996 - REVISED APRIL 2001


#### **AVAILABLE OPTIONS**

| т.            | V mov AT 25°C               | PACKAGED DEVICES          | SYMBOL  | CHIP<br>FORM‡ |
|---------------|-----------------------------|---------------------------|---------|---------------|
| TA            | V <sub>IO</sub> max AT 25°C | SOT-23 (DBV) <sup>†</sup> | STWIBOL | (Y)           |
| 0°C to 70°C   | 3 mV                        | TLV2231CDBV               | VAEC    | TLV2231Y      |
| -40°C to 85°C | 3 mV                        | TLV2231IDBV               | VAEI    | ILVZZSII      |

<sup>†</sup> The DBV package available in tape and reel only.

## **TLV2231Y chip information**


This chip, when properly assembled, displays characteristics similar to the TLV2231C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform.





<sup>‡</sup> Chip forms are tested at T<sub>A</sub> = 25°C only.

## equivalent schematic



| COMPONENT COUNT <sup>†</sup> |    |  |  |  |  |
|------------------------------|----|--|--|--|--|
| Transistors                  | 23 |  |  |  |  |
| Diodes                       | 5  |  |  |  |  |
| Resistors                    | 11 |  |  |  |  |
| Capacitors                   | 2  |  |  |  |  |

<sup>†</sup> Includes both amplifiers and all ESD, bias, and trim circuitry

## TLV2231, TLV2231Y Advanced LinCMOS™ RAIL-TO-RAIL LOW-POWER SINGLE OPERATIONAL AMPLIFIERS

SLOS158D - JUNE 1996 - REVISED APRIL 2001

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

| Supply voltage, V <sub>DD</sub> (see Note 1)                              |                              |
|---------------------------------------------------------------------------|------------------------------|
| Differential input voltage, V <sub>ID</sub> (see Note 2)                  | ±V <sub>DD</sub>             |
| Input voltage range, V <sub>I</sub> (any input, see Note 1)               | 0.3 V to V <sub>DD</sub>     |
| Input current, I <sub>I</sub> (each input)                                | ±5 mĀ                        |
| Output current, I <sub>O</sub>                                            | ±50 mA                       |
| Total current into V <sub>DD+</sub>                                       | ±50 mA                       |
| Total current out of V <sub>DD</sub>                                      | ±50 mA                       |
| Duration of short-circuit current (at or below) 25°C (see Note 3)         | unlimited                    |
| Continuous total power dissipation                                        | See Dissipation Rating Table |
| Operating free-air temperature range, T <sub>A</sub> : TLV2231C           | 0°C to 70°C                  |
| TLV2231I                                                                  | –40°C to 85°C                |
| Storage temperature range, T <sub>stq</sub>                               | –65°C to 150°C               |
| Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DBV package |                              |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to V<sub>DD</sub> \_.
  - 2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought below Vpp = -0.3 V.
  - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

#### **DISSIPATION RATING TABLE**

| PACKAGE | $T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING | DERATING FACTOR<br>ABOVE T <sub>A</sub> = 25°C | T <sub>A</sub> = 70°C<br>POWER RATING | T <sub>A</sub> = 85°C<br>POWER RATING |
|---------|----------------------------------------------------|------------------------------------------------|---------------------------------------|---------------------------------------|
| DBV     | 150 mW                                             | 1.2 mW/°C                                      | 96 mW                                 | 78 mW                                 |

## recommended operating conditions

|                                                | TLV2231C          |                       | TL        | UNIT                  |      |
|------------------------------------------------|-------------------|-----------------------|-----------|-----------------------|------|
|                                                | MIN               | MAX                   | MIN       | MAX                   | UNIT |
| Supply voltage, V <sub>DD</sub> (see Note 1)   | 2.7               | 10                    | 2.7       | 10                    | V    |
| Input voltage range, V <sub>I</sub>            | $V_{DD-}$         | V <sub>DD+</sub> -1.3 | $V_{DD-}$ | V <sub>DD+</sub> -1.3 | V    |
| Common-mode input voltage, V <sub>IC</sub>     | V <sub>DD</sub> _ | V <sub>DD+</sub> -1.3 | $V_{DD-}$ | V <sub>DD+</sub> -1.3 | V    |
| Operating free-air temperature, T <sub>A</sub> | 0                 | 70                    | -40       | 85                    | °C   |

NOTE 1: All voltage values, except differential voltages, are with respect to  $V_{DD-}$ .



SLOS158D - JUNE 1996 - REVISED APRIL 2001

## electrical characteristics at specified free-air temperature, $V_{DD} = 3 \text{ V}$ (unless otherwise noted)

|                  | DADAMETED                                               | TEST CON                                         | IDITIONS                           | +                  | TLV2231C       |                   | Т         | LV22311        |                   |           |       |
|------------------|---------------------------------------------------------|--------------------------------------------------|------------------------------------|--------------------|----------------|-------------------|-----------|----------------|-------------------|-----------|-------|
|                  | PARAMETER                                               | TEST CON                                         | ADITIONS                           | T <sub>A</sub> †   | MIN            | TYP               | MAX       | MIN            | TYP               | MAX       | UNIT  |
| VIO              | Input offset voltage                                    |                                                  |                                    |                    |                | 0.75              | 3         |                | 0.75              | 3         | mV    |
| αΛΙΟ             | Temperature coefficient of input offset voltage         |                                                  |                                    | Full range         |                | 0.5               |           |                | 0.5               |           | μV/°C |
|                  | Input offset voltage<br>long-term drift<br>(see Note 4) | $V_{DD\pm} = \pm 1.5 \text{ V},$<br>$V_{O} = 0,$ |                                    | 25°C               |                | 0.003             |           |                | 0.003             |           | μV/mo |
| IIO              | Input offset current                                    |                                                  |                                    | 25°C<br>Full range |                | 0.5               | 60<br>150 |                | 0.5               | 60<br>150 | pА    |
|                  |                                                         |                                                  |                                    | 25°C               |                | 1                 | 60        | -              | 1                 | 60        |       |
| lΒ               | Input bias current                                      |                                                  |                                    | Full range         |                | •                 | 150       |                | •                 | 150       | pΑ    |
| VICR             | Common-mode input                                       | R <sub>S</sub> = 50 Ω,                           | V <sub>IO</sub>   ≤5 mV            | 25°C               | 0<br>to<br>2   | -0.3<br>to<br>2.2 |           | 0<br>to<br>2   | -0.3<br>to<br>2.2 |           | V     |
| TICK             | voltage range                                           | 11.5 - 00 22,                                    | 14101 = 34                         | Full range         | 0<br>to<br>1.7 |                   |           | 0<br>to<br>1.7 |                   |           | •     |
|                  | I liab laval aviavit                                    | $I_{OH} = -1 \text{ mA}$                         |                                    | 25°C               |                | 2.87              |           |                | 2.87              |           |       |
| Vон              | High-level output voltage                               | I <sub>OH</sub> = -2 mA                          |                                    | 25°C               |                | 2.74              |           |                | 2.74              |           | V     |
|                  |                                                         |                                                  |                                    | Full range         | 2              |                   |           | 2              |                   |           |       |
| <b>.</b> ,       | Low-level output                                        | V <sub>IC</sub> = 1.5 V,                         | $I_{OL} = 50 \mu\text{A}$          | 25°C               |                | 10                |           |                | 10                |           | .,    |
| VOL              | voltage                                                 | V <sub>IC</sub> = 1.5 V,                         | $IOL = 500 \mu A$                  | 25°C               |                | 100               | 200       |                | 100               | 300       | mV    |
|                  |                                                         |                                                  | 1                                  | Full range<br>25°C | 1              | 1.6               | 300       | 1              | 1.6               | 300       |       |
| A <sub>VD</sub>  | Large-signal differential voltage                       | V <sub>IC</sub> = 1.5 V,                         | $R_L = 600 \Omega^{\ddagger}$      | Full range         | 0.3            | 1.0               |           | 0.3            | 1.0               |           | V/mV  |
| 7.00             | amplification                                           | $V_0 = 1 \text{ V to 2 V}$                       | $R_L = 1 M\Omega^{\ddagger}$       | 25°C               |                | 250               |           |                | 250               |           | 7,    |
| r <sub>id</sub>  | Differential input resistance                           |                                                  | , -                                | 25°C               |                | 1012              |           |                | 1012              |           | Ω     |
| r <sub>ic</sub>  | Common-mode input resistance                            |                                                  |                                    | 25°C               |                | 10 <sup>12</sup>  |           |                | 10 <sup>12</sup>  |           | Ω     |
| c <sub>ic</sub>  | Common-mode input capacitance                           | f = 10 kHz                                       |                                    | 25°C               |                | 6                 |           |                | 6                 |           | pF    |
| z <sub>o</sub>   | Closed-loop output impedance                            | f = 1 MHz,                                       | A <sub>V</sub> = 1                 | 25°C               |                | 156               |           |                | 156               |           | Ω     |
| CMRR             | Common-mode                                             | $V_{IC} = 0 \text{ to } 1.7 \text{ V},$          | D- 500                             | 25°C               | 60             | 70                |           | 60             | 70                |           | dB    |
|                  | rejection ratio                                         | V <sub>O</sub> = 1.5 V,                          | $R_S = 50 \Omega$                  | Full range         | 55             |                   |           | 55             |                   |           |       |
| k <sub>SVR</sub> | Supply voltage rejection ratio                          |                                                  | $V_{DD} = 2.7 \text{ V to 8 V},$ 2 |                    | 70             | 96                |           | 70             | 96                |           | dB    |
| "SVK             | (ΔV <sub>DD</sub> /ΔV <sub>IO</sub> )                   | $V_{IC} = V_{DD}/2$ ,                            | No load                            | Full range         | 70             |                   |           | 70             |                   |           | , J   |
| I <sub>DD</sub>  | Supply current                                          | V <sub>O</sub> = 1.5 V,                          | No load                            | 25°C               |                | 750               | 1200      |                | 750               | 1200      | μΑ    |
| المال            | EL A                                                    | I 5                                              | <del>-</del>                       | Full range         |                |                   | 1500      |                |                   | 1500      |       |

Full range for the TLV2231C is 0°C to 70°C. Full range for the TLV2231I is – 40°C to 85°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at  $T_A = 150^{\circ}C$  extrapolated to  $T_A = 25^{\circ}C$  using the Arrhenius equation and assuming an activation energy of 0.96 eV.



<sup>‡</sup>Referenced to 1.5 V

## TLV2231, TLV2231Y Advanced LinCMOS™ RAIL-TO-RAIL LOW-POWER SINGLE OPERATIONAL AMPLIFIERS

SLOS158D – JUNE 1996 – REVISED APRIL 2001

## operating characteristics at specified free-air temperature, $V_{DD} = 3 V$

|                | DADAMETED                          | TEST CONDITIONS                                                               |                                                 | T. †             | Т    | LV2231 | С   | ٦    | ΓLV2231 |     | UNIT                 |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
|----------------|------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------|------------------|------|--------|-----|------|---------|-----|----------------------|-----|-----|-----|-----|----|-----|----|-----|----|-----|--|--------|--|-----|
| r              | PARAMETER                          | IESI CONI                                                                     | DITIONS                                         | T <sub>A</sub> † | MIN  | TYP    | MAX | MIN  | TYP     | MAX | UNII                 |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
|                | Claus rata at units                |                                                                               |                                                 | 25°C             | 0.75 | 1.25   |     | 0.75 | 1.25    |     |                      |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
| SR             | Slew rate at unity gain            | $V_O = 1.1 \text{ V to } 1.9 \text{ V},$<br>$C_L = 100 \text{ pF}^{\ddagger}$ | $R_L = 600 \Omega^{\ddagger}$ ,                 | Full range       | 0.5  |        |     | 0.5  |         |     | V/μs                 |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
| \ <u>'</u>     | Equivalent input                   | f = 10 Hz                                                                     |                                                 | 25°C             |      | 105    |     |      | 105     |     | ->4/ <del> 1 -</del> |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
| V <sub>n</sub> | noise voltage                      | f = 1 kHz                                                                     |                                                 | 25°C             |      | 16     |     |      | 16      |     | nV/√Hz               |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
| \/=\           | Peak-to-peak                       | f = 0.1 Hz to 1 Hz                                                            |                                                 | 25°C             | 1.4  |        |     |      | 1.4     |     | /                    |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
| VN(PP)         | equivalent input<br>noise voltage  | f = 0.1 Hz to 10 Hz                                                           |                                                 | 25°C             | 1.5  |        |     |      | 1.5     |     | μV                   |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
| In             | Equivalent input noise current     |                                                                               |                                                 | 25°C             | 0.6  |        | 0.6 |      | 0.6     |     | 0.6                  |     | 0.6 |     | 0.6 |    | 0.6 |    | 0.6 |    | 0.6 |  | fA/√Hz |  |     |
|                | Total harmonic                     | V <sub>O</sub> = 1 V to 2 V,                                                  | A <sub>V</sub> = 1                              |                  |      | 0.285% |     |      | 0.285%  |     |                      |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
|                |                                    |                                                                               | 25°C                                            |                  | 7.2% |        |     | 7.2% |         |     |                      |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
| THD+N          | distortion plus<br>noise           | V <sub>O</sub> = 1 V to 2 V,                                                  | A <sub>V</sub> = 1                              |                  |      | 0.014% |     |      | 0.014%  |     | 1                    |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
|                | noise                              | f = 20  kHz,                                                                  | A <sub>V</sub> = 10                             | 25°C             |      | 0.098% |     |      | 0.098%  |     |                      |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
|                |                                    | R <sub>L</sub> = 600 Ω§                                                       | A <sub>V</sub> = 100                            |                  |      | 0.13%  |     |      | 0.13%   |     |                      |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
|                | Gain-bandwidth product             | f = 10 kHz,<br>C <sub>L</sub> = 100 pF <sup>‡</sup>                           | $R_L = 600 \Omega^{\ddagger}$ ,                 | 25°C             |      | 1.9    |     | 1.9  |         | 1.9 |                      | 1.9 |     | 1.9 |     |    | 1.9 |    | MHz |    |     |  |        |  |     |
| ВОМ            | Maximum output-<br>swing bandwidth | $V_{O(PP)} = 1 \text{ V},$<br>$R_{L} = 600 \Omega^{\ddagger},$                | $A_V = 1,$<br>$C_L = 100 \text{ pF}^{\ddagger}$ | 25°C             |      | 60     |     | 60   |         | 60  |                      | 60  |     | 60  |     | 60 |     | 60 |     | 60 |     |  | 60     |  | kHz |
| t_             | Settling time                      | $A_V = -1$ ,<br>Step = 1 V to 2 V,                                            | To 0.1%                                         | 25°C             |      | 0.9    |     |      | 0.9     |     | μs                   |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
| t <sub>S</sub> | Columny unio                       | $R_L = 600 \Omega^{\ddagger},$<br>$C_L = 100 pF^{\ddagger}$                   | To 0.01%                                        | 200              |      | 1.5    |     |      | 1.5     |     | μδ                   |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
| φm             | Phase margin at unity gain         | $R_{L} = 600 \Omega^{\ddagger}$ ,                                             | C <sub>L</sub> = 100 pF <sup>‡</sup>            | 25°C             | 50°  |        | 5°C |      |         | 50° |                      |     |     |     |     |    |     |    |     |    |     |  |        |  |     |
|                | Gain margin                        | 1                                                                             |                                                 | 25°C             |      | 8      |     |      | 8       |     | dB                   |     |     |     |     |    |     |    |     |    |     |  |        |  |     |

<sup>†</sup>Full range is -40°C to 85°C.



<sup>‡</sup>Referenced to 1.5 V

<sup>§</sup> Referenced to 0 V

SLOS158D - JUNE 1996 - REVISED APRIL 2001

## electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

|                 | PARAMETER                                               | TEST CON                                                            | IDITIONS                           | T <sub>A</sub> †   | T              | LV22310           |           | T              | LV22311           |           | LINUT  |
|-----------------|---------------------------------------------------------|---------------------------------------------------------------------|------------------------------------|--------------------|----------------|-------------------|-----------|----------------|-------------------|-----------|--------|
|                 | FARAIVIE I ER                                           | 1EST CON                                                            | פאטווים:                           | 'A'                | MIN            | TYP               | MAX       | MIN            | TYP               | MAX       | UNIT   |
| V <sub>IO</sub> | Input offset voltage                                    |                                                                     |                                    |                    |                | 0.71              | 3         |                | 0.71              | 3         | mV     |
| αVIO            | Temperature coefficient of input offset voltage         |                                                                     |                                    | Full range         |                | 0.5               |           |                | 0.5               |           | μV/°C  |
|                 | Input offset voltage<br>long-term drift<br>(see Note 4) | $V_{DD\pm} = \pm 2.5 \text{ V},$<br>$V_{O} = 0,$                    | $V_{IC} = 0,$<br>$R_S = 50 \Omega$ | 25°C               |                | 0.003             |           |                | 0.003             |           | μV/mo  |
| lio             | Input offset current                                    |                                                                     |                                    | 25°C<br>Full range |                | 0.5               | 60<br>150 |                | 0.5               | 60<br>150 | pА     |
|                 |                                                         | 1                                                                   |                                    | 25°C               |                | 1                 | 60        |                | 1                 | 60        |        |
| ΙΒ              | Input bias current                                      |                                                                     |                                    | Full range         |                |                   | 150       |                |                   | 150       | pΑ     |
| Vion            | Common-mode input                                       | $R_S = 50 \Omega$ ,                                                 | V <sub>IO</sub>   ≤5 mV            | 25°C               | 0<br>to<br>4   | -0.3<br>to<br>4.2 |           | 0<br>to<br>4   | -0.3<br>to<br>4.2 |           | ٧      |
| VICR            | voltage range                                           |                                                                     | IAIOI ≥2 IIIA                      | Full range         | 0<br>to<br>3.7 |                   |           | 0<br>to<br>3.7 |                   |           | V      |
|                 | LPak lavel entert                                       | $I_{OH} = -1 \text{ mA}$                                            |                                    | 25°C               |                | 4.9               |           |                | 4.9               |           |        |
| Vон             | OH High-level output voltage                            | I <sub>OH</sub> = -4 mA                                             |                                    | 25°C               |                | 4.6               |           |                | 4.6               |           | V      |
|                 |                                                         |                                                                     |                                    | Full range         | 4              |                   |           | 4              |                   |           |        |
|                 | Low-level output                                        | V <sub>IC</sub> = 2.5 V,                                            | I <sub>OL</sub> = 500 μA           | 25°C               |                | 80                |           |                | 80                |           | mV     |
| VOL             | voltage                                                 | V <sub>IC</sub> = 2.5 V,                                            | I <sub>OL</sub> = 1 mA             | 25°C               |                | 160               | 500       |                | 160               | 500       |        |
|                 |                                                         |                                                                     | Ī                                  | Full range<br>25°C | 1              | 1.5               | 500       | 1              | 1.5               | 500       |        |
| Λ. σ            | Large-signal differential voltage                       | $V_{IC} = 2.5 V,$                                                   | $R_L = 600 \Omega^{\ddagger}$      | Full range         | 0.3            | 1.5               |           | 0.3            | 1.0               |           | V/mV   |
| AVD             | amplification                                           | $V_O = 1 \text{ V to 4 V}$                                          | $R_L = 1 M\Omega^{\ddagger}$       | 25°C               | 0.5            | 400               |           | 0.5            | 400               |           | V/IIIV |
| <sup>r</sup> id | Differential input resistance                           |                                                                     | TYL = T Maz                        | 25°C               |                | 1012              |           |                | 1012              |           | Ω      |
| r <sub>ic</sub> | Common-mode input resistance                            |                                                                     |                                    | 25°C               |                | 10 <sup>12</sup>  |           |                | 1012              |           | Ω      |
| c <sub>ic</sub> | Common-mode input capacitance                           | f = 10 kHz                                                          |                                    | 25°C               |                | 6                 |           |                | 6                 |           | pF     |
| z <sub>o</sub>  | Closed-loop output impedance                            | f = 1 MHz,                                                          | A <sub>V</sub> = 1                 | 25°C               |                | 138               |           |                | 138               |           | Ω      |
| CMRR            | Common-mode rejection ratio                             | $V_{IC} = 0 \text{ to } 2.7 \text{ V},$<br>$V_{O} = 2.5 \text{ V},$ | R <sub>S</sub> = 50 Ω              | 25°C<br>Full range | 60<br>55       | 70                |           | 60<br>55       | 70                |           | dB     |
|                 | Supply voltage                                          | V <sub>DD</sub> = 4.4 V to 8                                        | 3 V.                               | 25°C               | 70             | 96                |           | 70             | 96                |           |        |
| ksvr            | rejection ratio $(\Delta V_{DD} / \Delta V_{IO})$       | $V_{IC} = V_{DD}/2$                                                 | No load                            | Full range         | 70             |                   |           | 70             |                   |           | dB     |
| I <sub>DD</sub> | Supply current                                          | V <sub>O</sub> = 2.5 V,                                             | No load                            | 25°C               |                | 850               | 1300      |                | 850               | 1300      | μΑ     |
| טט              | 117                                                     |                                                                     | -                                  | Full range         |                |                   | 1600      |                |                   | 1600      |        |

Full range for the TLV2231C is 0°C to 70°C. Full range for the TLV2231I is – 40°C to 85°C.

NOTE 5: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at  $T_A = 150^{\circ}C$  extrapolated to  $T_A = 25^{\circ}C$  using the Arrhenius equation and assuming an activation energy of 0.96 eV.



<sup>‡</sup>Referenced to 2.5 V

## TLV2231, TLV2231Y Advanced LinCMOS™ RAIL-TO-RAIL LOW-POWER SINGLE OPERATIONAL AMPLIFIERS

SLOS158D – JUNE 1996 – REVISED APRIL 2001

## operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

| PARAMETER                               |                                      | TEST CONDITIONS                                                |                                                 | T <sub>A</sub> † | Т      | LV22310 | C   | 7      | ΓLV2231 |     | UNIT               |  |     |  |     |  |     |  |     |  |     |
|-----------------------------------------|--------------------------------------|----------------------------------------------------------------|-------------------------------------------------|------------------|--------|---------|-----|--------|---------|-----|--------------------|--|-----|--|-----|--|-----|--|-----|--|-----|
| ľ                                       | PARAMETER                            | TEST CONDITIONS                                                |                                                 | 'A'              | MIN    | TYP     | MAX | MIN    | TYP     | MAX | UNII               |  |     |  |     |  |     |  |     |  |     |
|                                         | Slew rate at unity                   | V <sub>O</sub> = 1.5 V to 3.5 V,                               | $R_{1} = 600 \Omega^{\ddagger}$                 | 25°C             | 1      | 1.6     |     | 1      | 1.6     |     |                    |  |     |  |     |  |     |  |     |  |     |
| SR                                      | gain                                 | $C_L = 100 \text{ pF}^{\ddagger}$                              | RL = 600 12+,                                   | Full range       | 0.7    |         |     | 0.7    |         |     | V/μs               |  |     |  |     |  |     |  |     |  |     |
| V                                       | Equivalent input                     | f = 10 Hz                                                      |                                                 | 25°C             |        | 100     |     |        | 100     |     | nV/√ <del>Hz</del> |  |     |  |     |  |     |  |     |  |     |
| V <sub>n</sub>                          | noise voltage                        | f = 1 kHz                                                      |                                                 | 25°C             |        | 15      |     |        | 15      |     | nV/√Hz             |  |     |  |     |  |     |  |     |  |     |
| \/\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Peak-to-peak equivalent input        | f = 0.1 Hz to 1 Hz                                             | = 0.1 Hz to 1 Hz                                |                  |        | 1.4     |     |        | 1.4     |     | μV                 |  |     |  |     |  |     |  |     |  |     |
| VN(PP)                                  | noise voltage                        | f = 0.1 Hz to 10 Hz                                            |                                                 | 25°C             | 1.5    |         |     |        | 1.5     |     | μν                 |  |     |  |     |  |     |  |     |  |     |
| In                                      | Equivalent input noise current       |                                                                |                                                 | 25°C             |        | 0.6     |     |        | 0.6     |     | fA/√ <del>Hz</del> |  |     |  |     |  |     |  |     |  |     |
|                                         | Total harmonic                       | $V_O = 1.5 \text{ V to } 3.5 \text{ V},$<br>f = 20  kHz.       | A <sub>V</sub> = 1                              | 25°C             |        | 0.409%  |     |        | 0.409%  |     |                    |  |     |  |     |  |     |  |     |  |     |
|                                         |                                      |                                                                | A <sub>V</sub> = 10                             | 25.0             |        | 3.68%   |     |        | 3.68%   |     |                    |  |     |  |     |  |     |  |     |  |     |
| THD+N                                   | distortion plus<br>noise             | V <sub>O</sub> = 1.5 V to 3.5 V,                               | A <sub>V</sub> = 1                              |                  |        | 0.018%  |     |        | 0.018%  |     |                    |  |     |  |     |  |     |  |     |  |     |
|                                         | noise                                | f = 20 kHz,                                                    | A <sub>V</sub> = 10                             | 25°C             |        | 0.045%  |     |        | 0.045%  |     |                    |  |     |  |     |  |     |  |     |  |     |
|                                         |                                      | R <sub>L</sub> = 600 Ω§                                        | A <sub>V</sub> = 100                            |                  | 0.116% |         |     | 0.116% |         |     |                    |  |     |  |     |  |     |  |     |  |     |
|                                         | Gain-bandwidth product               | f = 10  kHz,<br>$C_L = 100 \text{ pF}^{\ddagger}$              | $R_L = 600 \Omega^{\ddagger}$ ,                 | 25°C             |        | 2       |     |        | 2       |     | MHz                |  |     |  |     |  |     |  |     |  |     |
| ВОМ                                     | Maximum<br>output-swing<br>bandwidth | $V_{O(PP)} = 1 \text{ V},$<br>$R_{L} = 600 \Omega^{\ddagger},$ | $A_V = 1,$<br>$C_L = 100 \text{ pF}^{\ddagger}$ | 25°C             | 300    |         | 300 |        | 300     |     | 300                |  | 300 |  | 300 |  | 300 |  | 300 |  | kHz |
| +_                                      | Settling time                        | $A_V = -1$ ,<br>Step = 1.5 V to 3.5 V,                         | To 0.1%                                         | 25°C             |        | 0.95    |     |        | 0.95    |     | 116                |  |     |  |     |  |     |  |     |  |     |
| t <sub>S</sub>                          | Octaining time                       | $R_L = 600 \Omega^{\ddagger},$<br>$C_L = 100 pF^{\ddagger}$    | To 0.01%                                        | 250              |        | 2.4     |     |        | 2.4     |     | μs                 |  |     |  |     |  |     |  |     |  |     |
| φm                                      | Phase margin at unity gain           | $R_1 = 600 \Omega^{\ddagger}$                                  | C <sub>I</sub> = 100 pF‡                        | 25°C             |        | 48°     |     |        | 48°     |     |                    |  |     |  |     |  |     |  |     |  |     |
|                                         | Gain margin                          | 1 -                                                            |                                                 | 25°C             |        | 8       |     |        | 8       |     | dB                 |  |     |  |     |  |     |  |     |  |     |

<sup>†</sup>Full range is -40°C to 85°C.



<sup>‡</sup>Referenced to 2.5 V

<sup>§</sup> Referenced to 0 V

SLOS158D - JUNE 1996 - REVISED APRIL 2001

## electrical characteristics at $V_{DD}$ = 3 V, $T_A$ = 25°C (unless otherwise noted)

|                 | DADAMETED                                                      | TEST                                                           | CONDITIONS                   |                   | TI  | V2231Y            | ′   | LINUT |
|-----------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------|-------------------|-----|-------------------|-----|-------|
|                 | PARAMETER                                                      | 1531                                                           | CONDITIONS                   |                   | MIN | TYP               | MAX | UNIT  |
| VIO             | Input offset voltage                                           |                                                                |                              |                   |     | 750               |     | μV    |
| IIO             | Input offset current                                           | $V_{DD} \pm = \pm 1.5 \text{ V},$<br>$R_S = 50 \Omega$         | $V_{IC} = 0$ ,               | $V_{O} = 0$ ,     |     | 0.5               |     | pA    |
| I <sub>IB</sub> | Input bias current                                             | 115 = 30 22                                                    |                              |                   |     | 1                 |     | pA    |
| VICR            | Common-mode input voltage range                                | V <sub>IO</sub>   ≤5 mV,                                       | R <sub>S</sub> = 50 Ω        |                   |     | -0.3<br>to<br>2.2 |     | ٧     |
| Vон             | High-level output voltage                                      | I <sub>OH</sub> = -1 mA                                        |                              |                   |     | 2.87              |     | V     |
| V               | Lavidaval autorituralta na                                     | V <sub>IC</sub> = 1.5 V,                                       | I <sub>OL</sub> = 50 μA      |                   |     | 10                |     | \/    |
| VOL             | Low-level output voltage                                       | V <sub>IC</sub> = 1.5 V,                                       | I <sub>OL</sub> = 500 μA     |                   |     | 100               |     | mV    |
|                 | Large-signal differential voltage                              | V 4.V/1- 0.V/                                                  | $R_L = 600 \Omega^{\dagger}$ |                   |     | 1.6               |     | \//\/ |
| AVD             | amplification                                                  | $V_O = 1 \text{ V to 2 V}$ $R_L = 1 \text{ M}\Omega^{\dagger}$ |                              | 250               |     | V/mV              |     |       |
| r <sub>id</sub> | Differential input resistance                                  |                                                                | •                            |                   |     | 1012              |     | Ω     |
| r <sub>ic</sub> | Common-mode input resistance                                   |                                                                |                              |                   |     | 1012              |     | Ω     |
| c <sub>ic</sub> | Common-mode input capacitance                                  | f = 10 kHz                                                     |                              |                   |     | 6                 |     | pF    |
| z <sub>O</sub>  | Closed-loop output impedance                                   | f = 1 MHz,                                                     | A <sub>V</sub> = 1           |                   |     | 156               |     | Ω     |
| CMRR            | Common-mode rejection ratio                                    | $V_{IC} = 0 \text{ to } 1.7 \text{ V},$                        | V <sub>O</sub> = 0,          | $R_S = 50 \Omega$ | 60  | 70                |     | dB    |
| ksvr            | Supply voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$ | $V_{DD} = 2.7 \text{ V to 8 V},$                               | V <sub>IC</sub> = 0,         | No load           |     | 96                |     | dB    |
| IDD             | Supply current                                                 | $V_{O} = 0$ ,                                                  | No load                      |                   |     | 750               |     | μΑ    |

<sup>†</sup> Referenced to 1.5 V

## electrical characteristics at $V_{DD}$ = 5 V, $T_A$ = 25°C (unless otherwise noted)

| PARAMETER       |                                                                      | TEG                                                            | CONDITIONS                   |              | TI  | LV2231\           | ′   |       |
|-----------------|----------------------------------------------------------------------|----------------------------------------------------------------|------------------------------|--------------|-----|-------------------|-----|-------|
|                 | PARAMETER                                                            | lesi                                                           | CONDITIONS                   |              | MIN | TYP               | MAX | UNIT  |
| V <sub>IO</sub> | Input offset voltage                                                 |                                                                |                              |              |     | 710               |     | μV    |
| lю              | Input offset current                                                 | $V_{DD} \pm = \pm 1.5 \text{ V},$<br>$R_S = 50 \Omega$         | $V_{IC} = 0$ ,               | $V_{O} = 0,$ |     | 0.5               |     | pА    |
| lв              | Input bias current                                                   | T (S = 30 \( \)22                                              |                              |              |     | 1                 |     | pА    |
| VICR            | Common-mode input voltage range                                      | V <sub>IO</sub>   ≤5 mV,                                       | R <sub>S</sub> = 50 Ω        |              |     | -0.3<br>to<br>4.2 |     | V     |
| VOH             | High-level output voltage                                            | I <sub>OH</sub> = -1 mA                                        |                              |              |     | 4.9               |     | V     |
| .,              | Law law law tautantan law                                            | V <sub>IC</sub> = 2.5 V,                                       | I <sub>OL</sub> = 500 μA     |              |     | 80                |     | >/    |
| VOL             | Low-level output voltage                                             | V <sub>IC</sub> = 2.5 V,                                       | I <sub>OL</sub> = 1 mA       |              |     | 160               |     | mV    |
|                 | Large-signal differential voltage                                    | V 4.V/1- 0.V/                                                  | $R_L = 600 \Omega^{\dagger}$ |              |     | 15                |     | \//\/ |
| AVD             | amplification                                                        | $V_O = 1 \text{ V to 2 V}$ $R_I = 1 \text{ M}\Omega^{\dagger}$ |                              | 400          |     | V/mV              |     |       |
| r <sub>id</sub> | Differential input resistance                                        |                                                                | •                            |              |     | 1012              |     | Ω     |
| r <sub>ic</sub> | Common-mode input resistance                                         |                                                                |                              |              |     | 1012              |     | Ω     |
| c <sub>ic</sub> | Common-mode input capacitance                                        | f = 10 kHz                                                     |                              |              |     | 6                 |     | pF    |
| z <sub>O</sub>  | Closed-loop output impedance                                         | f = 1 MHz,                                                     | A <sub>V</sub> = 1           |              |     | 138               |     | Ω     |
| CMRR            | Common-mode rejection ratio                                          | $V_{IC} = 0 \text{ to } 1.7 \text{ V},$                        | V <sub>O</sub> = 0,          | Rs = 50 Ω    | 60  | 70                |     | dB    |
| ksvr            | Supply voltage rejection ratio (ΔV <sub>DD</sub> /ΔV <sub>IO</sub> ) | $V_{DD} = 2.7 \text{ V to 8 V},$                               | V <sub>IC</sub> = 0,         | No load      |     | 96                |     | dB    |
| lDD             | Supply current                                                       | $V_{O} = 0,$                                                   | No load                      |              |     | 850               |     | μΑ    |

<sup>†</sup> Referenced to 2.5 V



## **Table of Graphs**

|                                  |                                                 |                                             | FIGURE           |
|----------------------------------|-------------------------------------------------|---------------------------------------------|------------------|
| VIO                              | Input offset voltage                            | Distribution vs Common-mode input voltage   | 2, 3<br>4, 5     |
| ανιο                             | Input offset voltage temperature coefficient    | Distribution                                | 6, 7             |
| I <sub>IB</sub> /I <sub>IO</sub> | Input bias and input offset currents            | vs Free-air temperature                     | 8                |
| VI                               | Input voltage                                   | vs Supply voltage vs Free-air temperature   | 9<br>10          |
| Vон                              | High-level output voltage                       | vs High-level output current                | 11, 14           |
| VOL                              | Low-level output voltage                        | vs Low-level output current                 | 12, 13, 15       |
| VO(PP)                           | Maximum peak-to-peak output voltage             | vs Frequency                                | 16               |
| los                              | Short-circuit output current                    | vs Supply voltage vs Free-air temperature   | 17<br>18         |
| ٧o                               | Output voltage                                  | vs Differential input voltage               | 19, 20           |
| AVD                              | Differential voltage amplification              | vs Load resistance                          | 21               |
| AVD                              | Large-signal differential voltage amplification | vs Frequency<br>vs Free-air temperature     | 22, 23<br>24, 25 |
| z <sub>O</sub>                   | Output impedance                                | vs Frequency                                | 26, 27           |
| CMRR                             | Common-mode rejection ratio                     | vs Frequency<br>vs Free-air temperature     | 28<br>29         |
| ksvr                             | Supply-voltage rejection ratio                  | vs Frequency<br>vs Free-air temperature     | 30, 31<br>32     |
| I <sub>DD</sub>                  | Supply current                                  | vs Supply voltage                           | 33               |
| SR                               | Slew rate                                       | vs Load capacitance vs Free-air temperature | 34<br>35         |
| ٧o                               | Inverting large-signal pulse response           | vs Time                                     | 36, 37           |
| ٧o                               | Voltage-follower large-signal pulse response    | vs Time                                     | 38, 39           |
| ٧o                               | Inverting small-signal pulse response           | vs Time                                     | 40, 41           |
| ٧o                               | Voltage-follower small-signal pulse response    | vs Time                                     | 42, 43           |
| V <sub>n</sub>                   | Equivalent input noise voltage                  | vs Frequency                                | 44, 45           |
|                                  | Noise voltage (referred to input)               | Over a 10-second period                     | 46               |
| THD + N                          | Total harmonic distortion plus noise            | vs Frequency                                | 47               |
|                                  | Gain-bandwidth product                          | vs Free-air temperature vs Supply voltage   | 48<br>49         |
|                                  | Gain margin                                     | vs Load capacitance                         | 50, 51           |
| φm                               | Phase margin                                    | vs Frequency<br>vs Load capacitance         | 22, 23<br>52, 53 |
| B <sub>1</sub>                   | Unity-gain bandwidth                            | vs Load capacitance                         | 54, 55           |



SLOS158D - JUNE 1996 - REVISED APRIL 2001

#### TYPICAL CHARACTERISTICS

# DISTRIBUTION OF TLV2231 INPUT OFFSET VOLTAGE

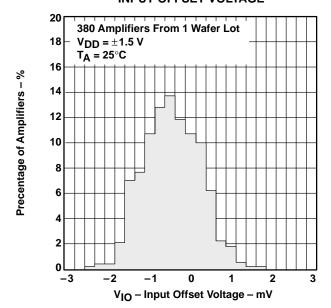



Figure 2

# DISTRIBUTION OF TLV2231 INPUT OFFSET VOLTAGE

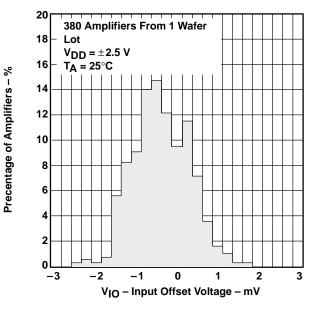
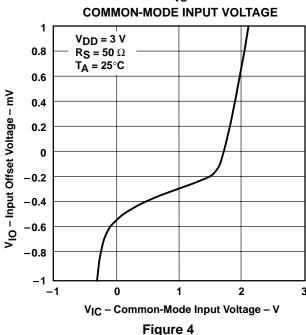
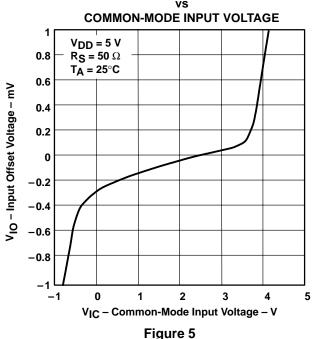
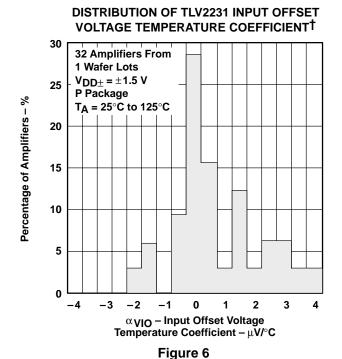
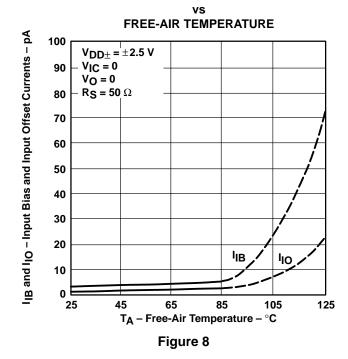





Figure 3

# INPUT OFFSET VOLTAGE<sup>†</sup> vs




## INPUT OFFSET VOLTAGE†




† For all curves where V<sub>DD</sub> = 5 V, all loads are referenced to 2.5 V. For all curves where V<sub>DD</sub> = 3 V, all loads are referenced to 1.5 V.





# INPUT BIAS AND INPUT OFFSET CURRENTS†



# DISTRIBUTION OF TLV2231 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT<sup>†</sup>

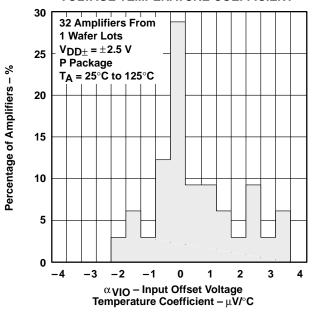
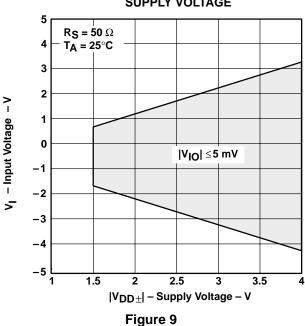




Figure 7

# INPUT VOLTAGE vs SUPPLY VOLTAGE



† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



HIGH-LEVEL OUTPUT VOLTAGE†‡

#### TYPICAL CHARACTERISTICS

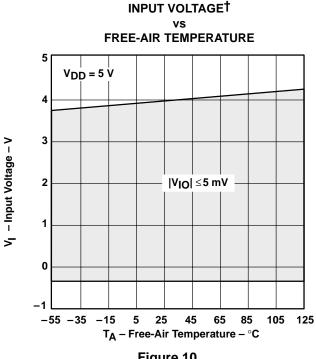
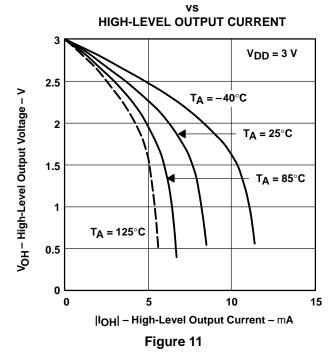
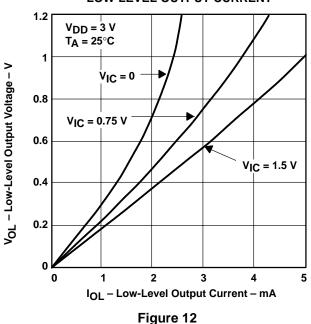





Figure 10



LOW-LEVEL OUTPUT VOLTAGE‡ **LOW-LEVEL OUTPUT CURRENT** 



**LOW-LEVEL OUTPUT CURRENT**  $V_{DD} = 3 V$ V<sub>IC</sub> = 1.5 V 1.2 V<sub>OL</sub> - Low-Level Output Voltage - V T<sub>A</sub> = 125°C 1  $T_A = 85^{\circ}C$ 8.0 T<sub>A</sub> = 25°C 0.6 – 40°C

LOW-LEVEL OUTPUT VOLTAGE†‡

IOL - Low-Level Output Current - mA Figure 13

<sup>‡</sup> For all curves where V<sub>DD</sub> = 5 V, all loads are referenced to 2.5 V. For all curves where V<sub>DD</sub> = 3 V, all loads are referenced to 1.5 V.



0.4

0.2

0

5

<sup>†</sup> Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

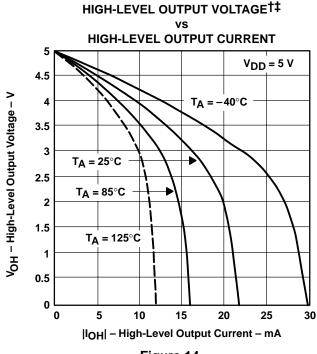
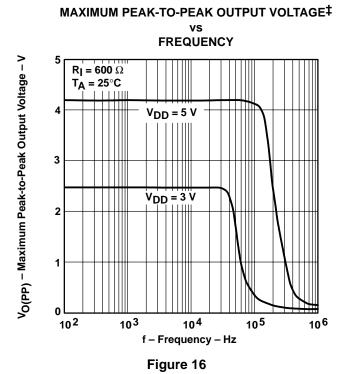
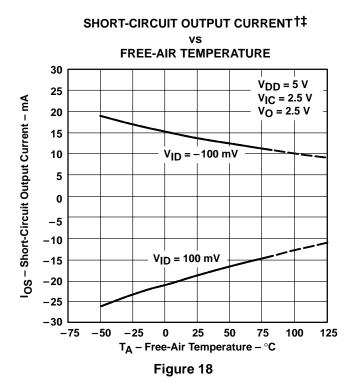



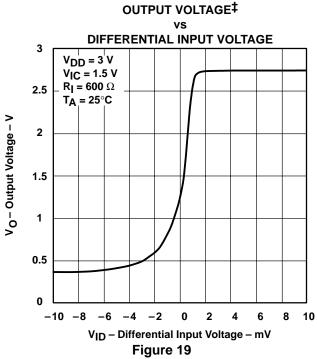

Figure 14



Figure 15

SHORT-CIRCUIT OUTPUT CURRENT





**SUPPLY VOLTAGE** 30  $V_O = V_{DD}/2$  $V_{IC} = V_{DD}/2$ 25 OS - Short-Circuit Output Current - mA TA = 25°C 20 15  $V_{ID} = -100 \text{ mV}$ 10 5 0 -5 -10 -15 V<sub>ID</sub> = 100 mV -20 -25 -303 2 8 V<sub>DD</sub> – Supply Voltage – V

<sup>‡</sup> For all curves where V<sub>DD</sub> = 5 V, all loads are referenced to 2.5 V. For all curves where V<sub>DD</sub> = 3 V, all loads are referenced to 1.5 V.



<sup>†</sup> Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.





## **DIFFERENTIAL INPUT VOLTAGE** 5 $V_{DD} = 5 V$ $V_{IC} = 2.5 V$ $R_L = 600 \Omega$ 4 $T_A = 25^{\circ}C$ V<sub>O</sub>-Output Voltage - V 3 2 1

-10 -8

-6

-4 -2

0 2

V<sub>ID</sub> – Differential Input Voltage – mV

Figure 20

**OUTPUT VOLTAGE**‡

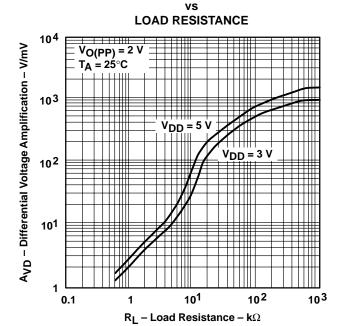



Figure 21

DIFFERENTIAL VOLTAGE AMPLIFICATION<sup>‡</sup>

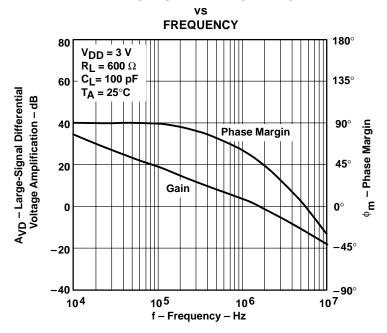
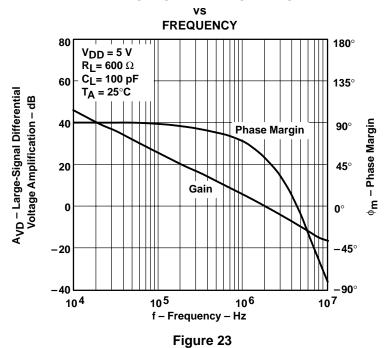
10 8

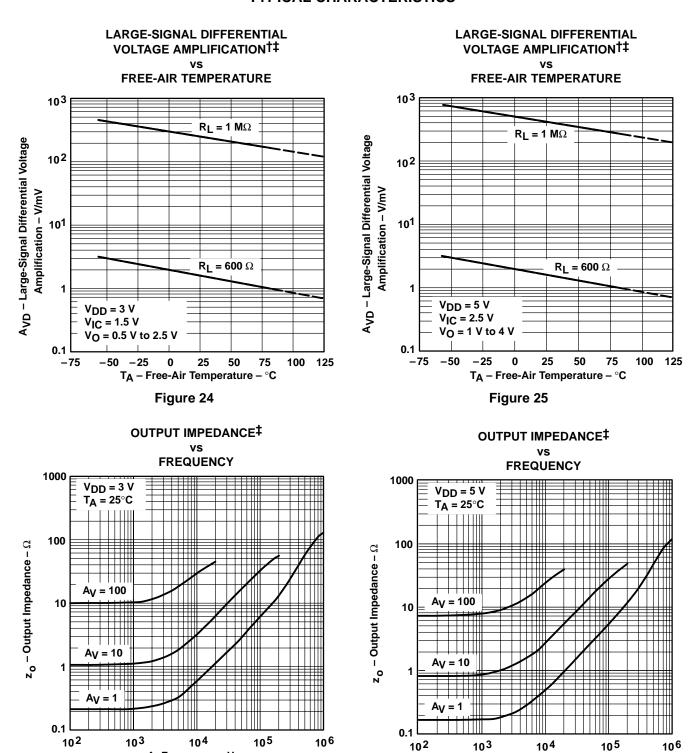
<sup>‡</sup> For all curves where V<sub>DD</sub> = 5 V, all loads are referenced to 2.5 V. For all curves where V<sub>DD</sub> = 3 V, all loads are referenced to 1.5 V.



<sup>†</sup> Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

# LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN<sup>†</sup>



Figure 22

# LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN<sup>†</sup>



† For all curves where  $V_{DD}$  = 5 V, all loads are referenced to 2.5 V. For all curves where  $V_{DD}$  = 3 V, all loads are referenced to 1.5 V.

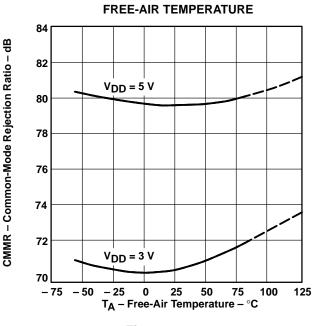




<sup>†</sup> Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

f- Frequency - Hz

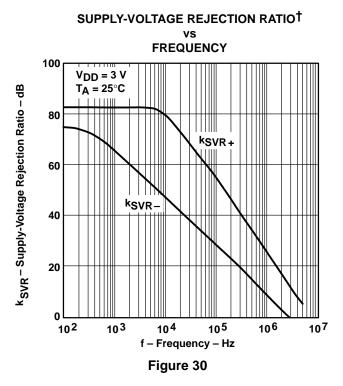
Figure 26

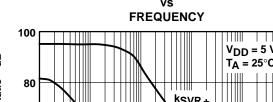

<sup>‡</sup> For all curves where V<sub>DD</sub> = 5 V, all loads are referenced to 2.5 V. For all curves where V<sub>DD</sub> = 3 V, all loads are referenced to 1.5 V.



f- Frequency - Hz

## COMMON-MODE REJECTION RATIO<sup>†</sup> **FREQUENCY** 100 $T_A = 25^{\circ}C$ CMRR - Common-Mode Rejection Ratio - dB $V_{DD} = 5 V$ V<sub>IC</sub> = 2.5 V 80 $V_{DD} = 3 V$ 60 $V_{IC} = 1.5 V$ 40 20 0 102 103 104 105 106 107 f - Frequency - Hz



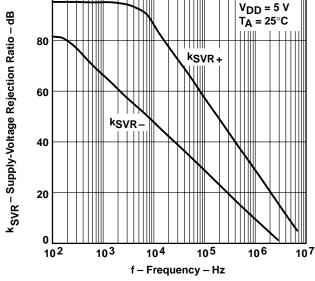
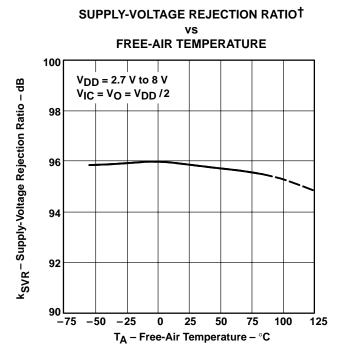
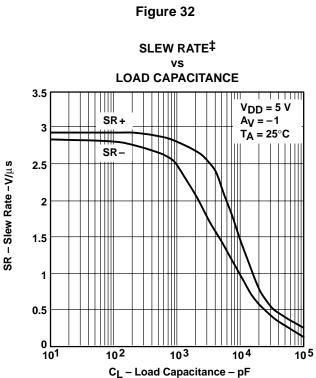


COMMON-MODE REJECTION RATIO†‡

Figure 29

SUPPLY-VOLTAGE REJECTION RATIO<sup>†</sup>






Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



<sup>†</sup> For all curves where V<sub>DD</sub> = 5 V, all loads are referenced to 2.5 V. For all curves where V<sub>DD</sub> = 3 V, all loads are referenced to 1.5 V.





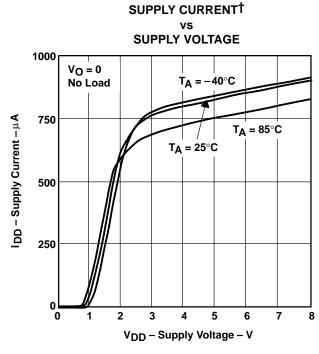



Figure 33

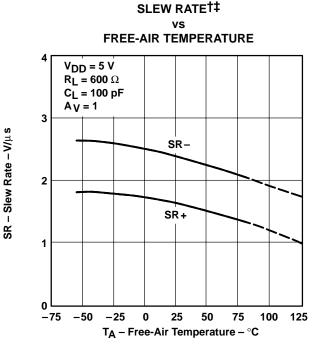



Figure 35

<sup>‡</sup> For all curves where V<sub>DD</sub> = 5 V, all loads are referenced to 2.5 V. For all curves where V<sub>DD</sub> = 3 V, all loads are referenced to 1.5 V.



<sup>†</sup> Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

## **INVERTING LARGE-SIGNAL PULSE RESPONSE**† $V_{DD} = 3 V$ $R_L = 600 \Omega$ C<sub>L</sub> = 100 pF 2.5 $A_{V} = -1$ T<sub>A</sub> = 25°C V<sub>O</sub> - Output Voltage - V 2 1.5 1 0.5 0.5 1 1.5 2 2.5 3 3.5 4.5

Figure 36

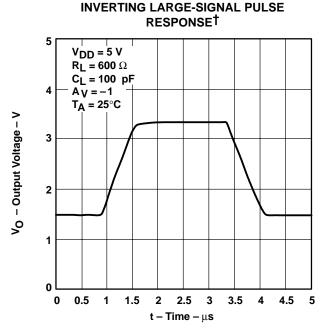



Figure 37



 $t - Time - \mu s$ 

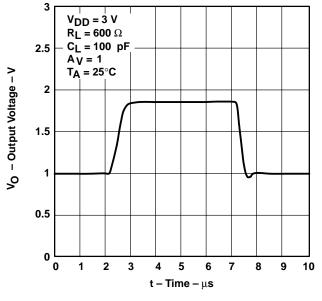



Figure 38

# VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE<sup>†</sup>

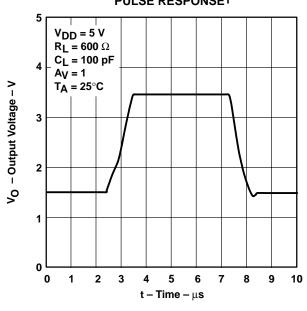
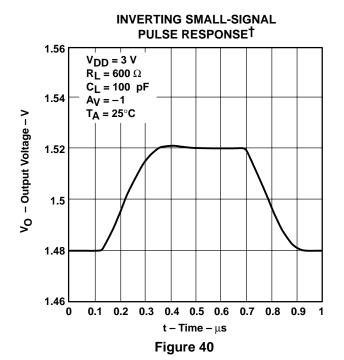
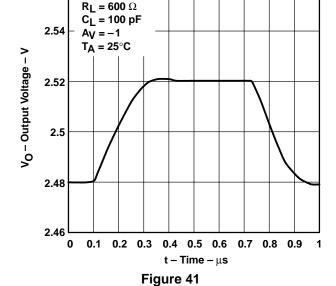



Figure 39

† For all curves where V<sub>DD</sub> = 5 V, all loads are referenced to 2.5 V. For all curves where V<sub>DD</sub> = 3 V, all loads are referenced to 1.5 V.




**INVERTING SMALL-SIGNAL** 


PULSE RESPONSE<sup>†</sup>

## **TYPICAL CHARACTERISTICS**

2.56

 $V_{DD} = 5 V$ 







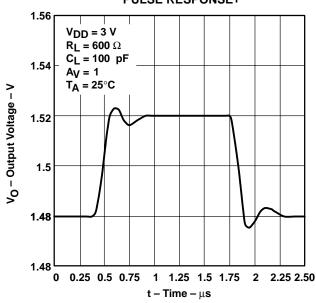
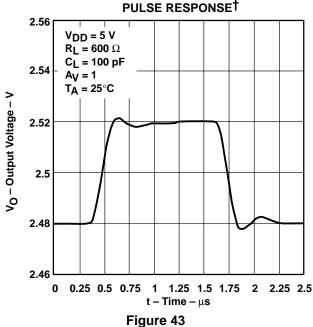
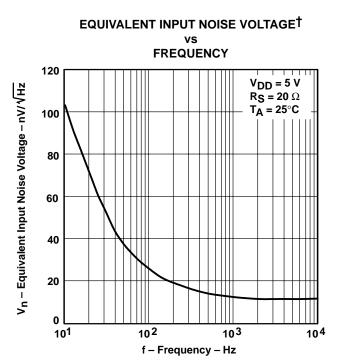
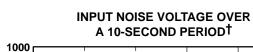




Figure 42


VOLTAGE-FOLLOWER SMALL-SIGNAL




† For all curves where V<sub>DD</sub> = 5 V, all loads are referenced to 2.5 V. For all curves where V<sub>DD</sub> = 3 V, all loads are referenced to 1.5 V.



## **EQUIVALENT INPUT NOISE VOLTAGE**<sup>†</sup> vs **FREQUENCY** 120 V<sub>DD</sub> = 3 V V<sub>n</sub> – Equivalent Input Noise Voltage – nV/ √Hz $R_S = 20 \Omega$ T<sub>A</sub> = 25°C 100 80 60 40 20 0 102 101 10<sup>3</sup> 104 f - Frequency - Hz Figure 44





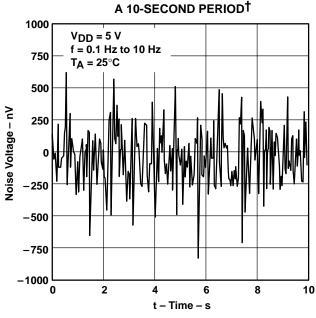
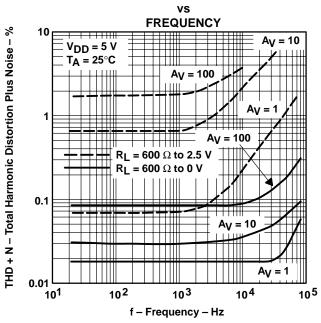
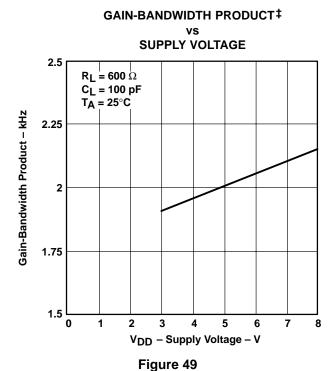
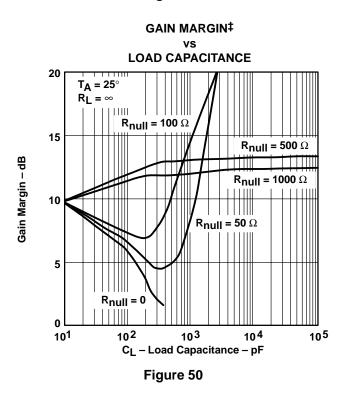


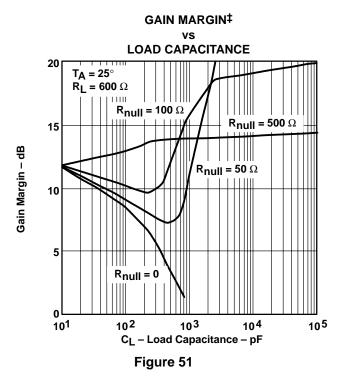

Figure 46



Figure 45

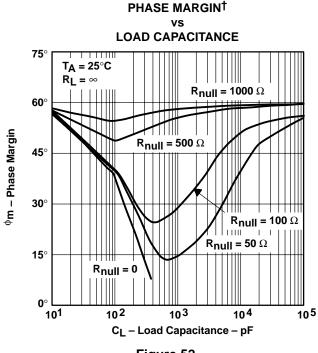


Figure 47

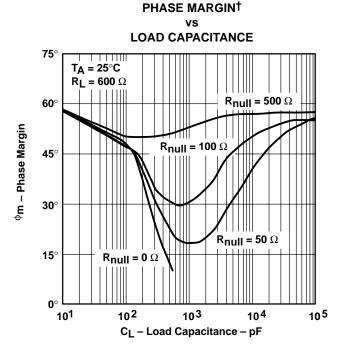

† For all curves where  $V_{DD}$  = 5 V, all loads are referenced to 2.5 V. For all curves where  $V_{DD}$  = 3 V, all loads are referenced to 1.5 V.



## **GAIN-BANDWIDTH PRODUCT †**‡ FREE-AIR TEMPERATURE $V_{DD} = 5 V$ f = 10 kHz 3.5 $R_L = 600 \Omega$ Gain-Bandwidth Product - kHz C<sub>L</sub> = 100 pF 2.5 2 1.5 -75 -50 -25 25 100 125 $T_A$ – Free-Air Temperature – $^{\circ}C$ Figure 48

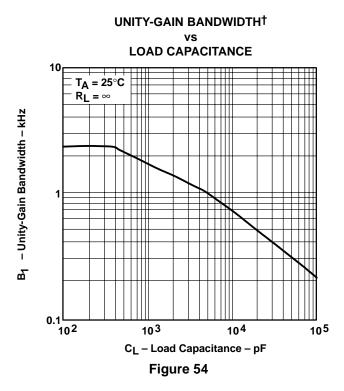


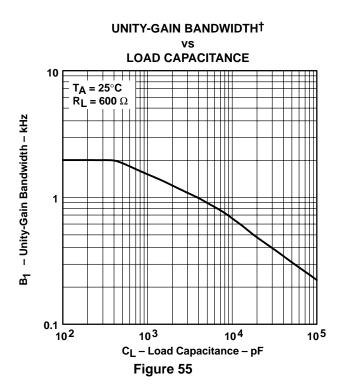



<sup>†</sup> Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

<sup>‡</sup> For all curves where V<sub>DD</sub> = 5 V, all loads are referenced to 2.5 V. For all curves where V<sub>DD</sub> = 3 V, all loads are referenced to 1.5 V.














† For all curves where V<sub>DD</sub> = 5 V, all loads are referenced to 2.5 V. For all curves where V<sub>DD</sub> = 3 V, all loads are referenced to 1.5 V.



SLOS158D – JUNE 1996 – REVISED APRIL 2001

#### **APPLICATION INFORMATION**

## driving large capacitive loads

The TLV2231 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 50 through Figure 55 illustrate its ability to drive loads greater than 100 pF while maintaining good gain and phase margins (R<sub>null</sub> = 0).

A small series resistor ( $R_{null}$ ) at the output of the device (see Figure 56) improves the gain and phase margins when driving large capacitive loads. Figure 50 through Figure 53 show the effects of adding series resistances of 50  $\Omega$ , 100  $\Omega$ , 500  $\Omega$ , and 1000  $\Omega$ . The addition of this series resistor has two effects: the first effect is that it adds a zero to the transfer function and the second effect is that it reduces the frequency of the pole associated with the output load in the transfer function.

The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the approximate improvement in phase margin, equation 1 can be used.

$$\Delta\phi_{m1} = \tan^{-1} \left( 2 \times \pi \times \text{UGBW} \times R_{\text{null}} \times C_{\text{L}} \right)$$
 (1)

Where:

 $\Delta \phi_{m1}$  = Improvement in phase margin

UGBW = Unity - gain bandwidth frequency

R<sub>null</sub> = Output series resistance

 $C_L$  = Load capacitance

The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 54 and Figure 55). To use equation 1, UGBW must be approximated from Figure 54 and Figure 55.

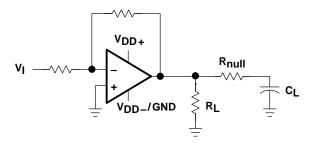



Figure 56. Series-Resistance Circuit

#### **APPLICATION INFORMATION**

## macromodel information

Macromodel information provided was derived using Microsim  $Parts^{TM}$ , the model generation software used with Microsim  $PSpice^{TM}$ . The Boyle macromodel (see Note 6) and subcircuit in Figure 57 are generated using the TLV2231 typical electrical and operating characteristics at  $T_A = 25$ °C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers," *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).

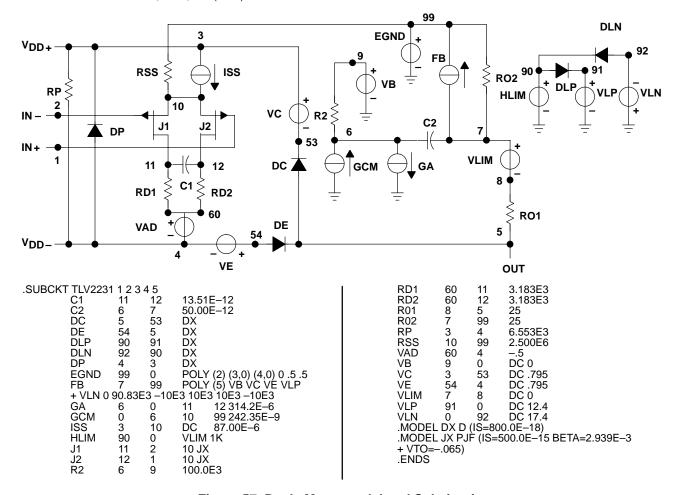



Figure 57. Boyle Macromodel and Subcircuit

PSpice and Parts are trademark of MicroSim Corporation.



Macromodels, simulation models, or other models provided by TI directly or indirectly, are not warranted by TI as fully representing al of the specification and operating characteristics of the semiconductor product to which the model relates.

www.ti.com

#### **PACKAGING INFORMATION**

| _                       |                |         |              |                    |      |                |              |                               |                    |   |
|-------------------------|----------------|---------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|---|
| Orderable Device Status |                |         | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp      | 0 |
| L                       |                |         |              |                    | 1    |                |              | (6)                           |                    |   |
|                         | TLV2231CDBVR   | LIFEBUY | SOT-23       | DBV                | 5    | 3000           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM |   |
|                         | TLV2231CDBVT   | LIFEBUY | SOT-23       | DBV                | 5    | 250            | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM |   |
| ſ                       | TLV2231IDBVR   | ACTIVE  | SOT-23       | DBV                | 5    | 3000           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM |   |
|                         | TLV2231IDBVT   | LIFEBUY | SOT-23       | DBV                | 5    | 250            | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM |   |
| ſ                       | TLV2231IDBVTG4 | LIFEBUY | SOT-23       | DBV                | 5    | 250            | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM |   |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including to do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in spreference these types of products as "Pb-Free".

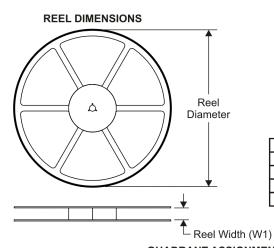
RoHS Exempt: Ti defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: Ti defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000pp flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a life of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/E lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis of TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

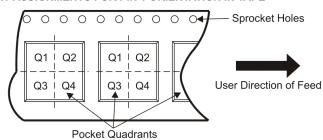





www.ti.com

| In no event shall TI's liability arising out of such information exceed the total purchase price of the   | TI part(s) at issue in this document sold by TI to Customer ( |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| in the event shall it is liability arising out or such information exceed the total purchase price of the | Tripari(s) at issue in this document sold by Trito Customer ( |
|                                                                                                           |                                                               |
|                                                                                                           |                                                               |
|                                                                                                           |                                                               |
|                                                                                                           |                                                               |
|                                                                                                           |                                                               |
|                                                                                                           |                                                               |
|                                                                                                           |                                                               |
|                                                                                                           |                                                               |
|                                                                                                           |                                                               |
|                                                                                                           |                                                               |
|                                                                                                           |                                                               |
|                                                                                                           |                                                               |
|                                                                                                           |                                                               |
|                                                                                                           |                                                               |
|                                                                                                           |                                                               |
|                                                                                                           |                                                               |
| Adde                                                                                                      | ndum-Page 2                                                   |
|                                                                                                           |                                                               |

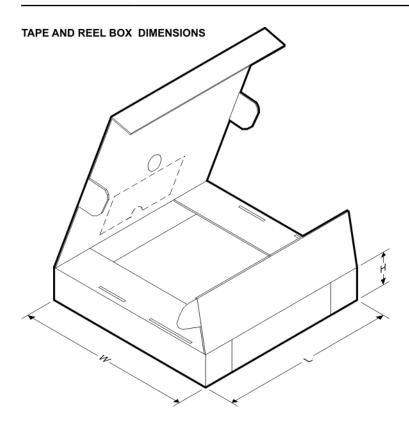



## **TAPE AND REEL INFORMATION**



# TAPE DIMENSIONS KO P1 BO W Cavity A0

|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
|    | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |


#### **QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE**



## \*All dimensions are nominal

| Device       | Package<br>Type | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadra |
|--------------|-----------------|--------------------|---|------|--------------------------|--------------------------|---------|---------|---------|------------|-----------|----------------|
| TLV2231CDBVR | SOT-23          | DBV                | 5 | 3000 | 180.0                    | 9.0                      | 3.15    | 3.2     | 1.4     | 4.0        | 8.0       | Q3             |
| TLV2231CDBVT | SOT-23          | DBV                | 5 | 250  | 180.0                    | 9.0                      | 3.15    | 3.2     | 1.4     | 4.0        | 8.0       | Q3             |
| TLV2231IDBVR | SOT-23          | DBV                | 5 | 3000 | 180.0                    | 9.0                      | 3.15    | 3.2     | 1.4     | 4.0        | 8.0       | Q3             |
| TLV2231IDBVT | SOT-23          | DBV                | 5 | 250  | 180.0                    | 9.0                      | 3.15    | 3.2     | 1.4     | 4.0        | 8.0       | Q3             |





## \*All dimensions are nominal

| Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TLV2231CDBVR | SOT-23       | DBV             | 5    | 3000 | 182.0       | 182.0      | 20.0        |
| TLV2231CDBVT | SOT-23       | DBV             | 5    | 250  | 182.0       | 182.0      | 20.0        |
| TLV2231IDBVR | SOT-23       | DBV             | 5    | 3000 | 182.0       | 182.0      | 20.0        |
| TLV2231IDBVT | SOT-23       | DBV             | 5    | 250  | 182.0       | 182.0      | 20.0        |

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated