

Click to view price, real time Inventory, Delivery & Lifecycle Information ;

SBCP53-16T1G

onsemi

Bipolar Transistors - BJT SS GP XSTR PNP 80V

Any questions, please feel free to contact us. info@kaimte.com

PNP Silicon Epitaxial Transistors

This PNP Silicon Epitaxial transistor is designed for use in audio amplifier applications. The device is housed in the SOT–223 package which is designed for medium power surface mount applications.

- High Current
- NPN Complement is BCP56
- The SOT-223 Package can be soldered using wave or reflow. The formed leads absorb thermal stress during soldering, eliminating the possibility of damage to the die
- Device Marking: BCP53T1G = AH BCP53-10T1G = AH-10 BCP53-16T1G = AH-16
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

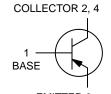
MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)

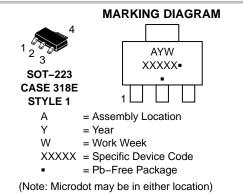
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	-80	Vdc
Collector-Base Voltage	V _{CBO}	-100	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current	Ι _C	1.5	Adc
Total Power Dissipation @ $T_A = 25^{\circ}C$ (Note 1) Derate above $25^{\circ}C$	P _D	1.5 12	W mW/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Device mounted on a glass epoxy printed circuit board 1.575 in. x 1.575 in. x 0.059 in.; mounting pad for the collector lead min. 0.93 sq. in.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction-to-Ambient (Surface Mounted)	$R_{\theta JA}$	83.3	°C/W
Lead Temperature for Soldering, 0.0625″ from case Time in Solder Bath	ΤL	260 10	°C s


ON Semiconductor®

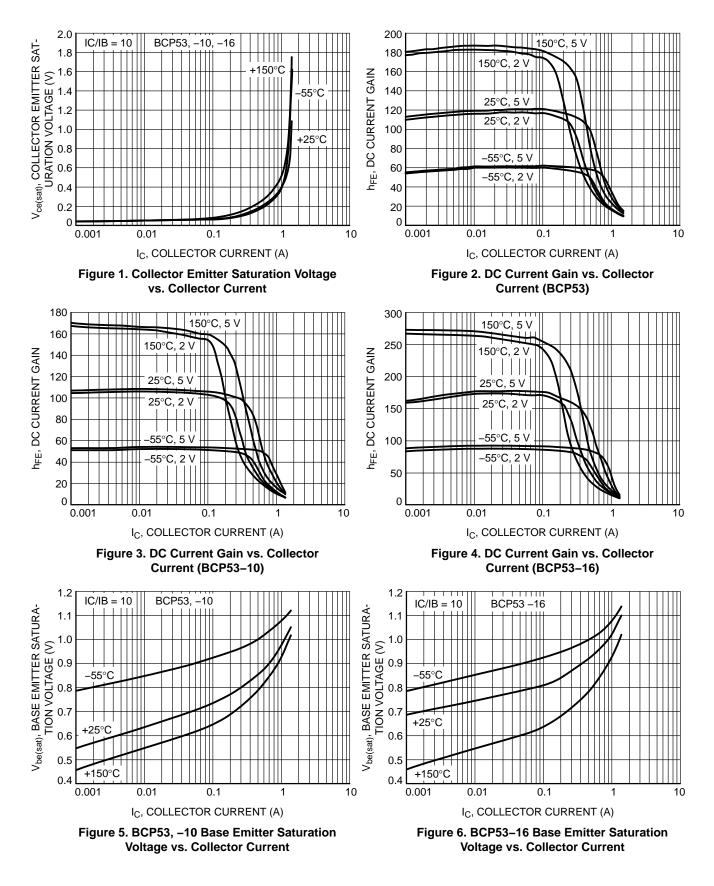
www.onsemi.com

MEDIUM POWER HIGH CURRENT SURFACE MOUNT PNP TRANSISTORS

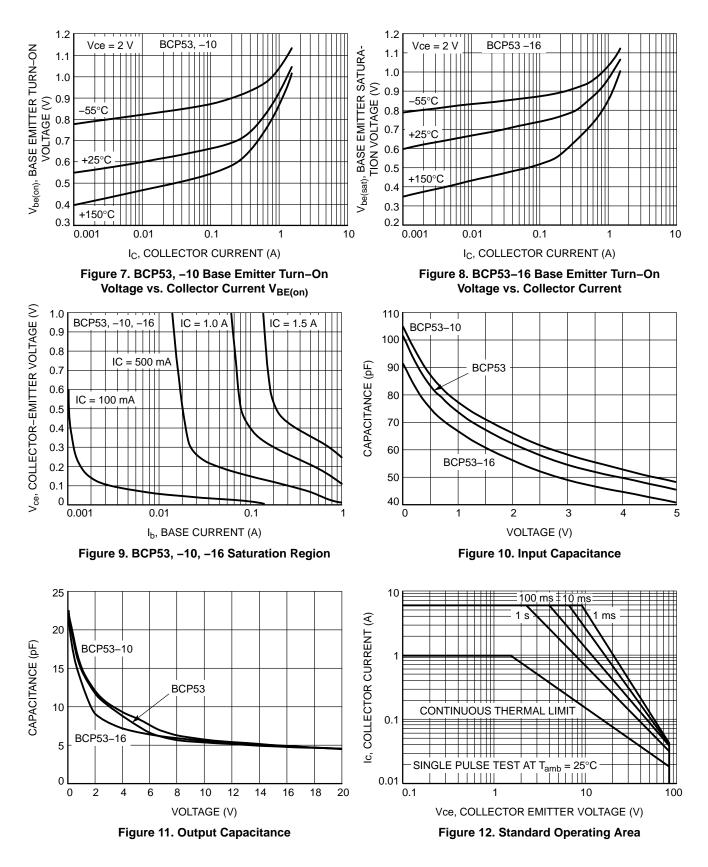
EMITTER 3

ORDERING INFORMATION

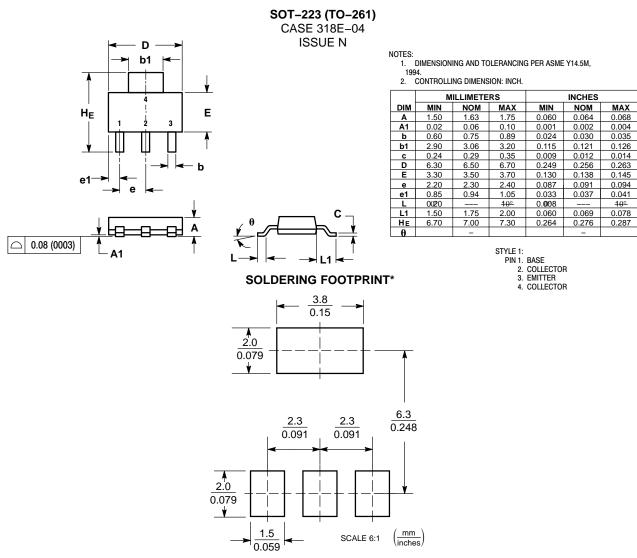
Device	Package	Shipping [†]
BCP53T1G	SOT-223 (Pb-Free)	1000/Tape & Reel
SBCP53-10T1G	SOT-223 (Pb-Free)	1000/Tape & Reel
BCP53-10T1G	SOT-223 (Pb-Free)	1000/Tape & Reel
SBCP53-10T1G	SOT-223 (Pb-Free)	1000/Tape & Reel
BCP53-16T1G	SOT-223 (Pb-Free)	1000/Tape & Reel
SBCP53-16T1G	SOT-223 (Pb-Free)	1000/Tape & Reel
BCP53-16T3G	SOT-223 (Pb-Free)	4000/Tape & Reel
NSVBCP53-16T3G	SOT-223 (Pb-Free)	4000/Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)


Characteristics	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	· · ·				
Collector–Base Breakdown Voltage $(I_C = -100 \ \mu Adc, I_E = 0)$	V _{(BR)CBO}	-100	_	-	Vdc
Collector–Emitter Breakdown Voltage $(I_C = -1.0 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	-80	_	-	Vdc
Collector–Emitter Breakdown Voltage ($I_C = -100 \ \mu Adc, R_{BE} = 1.0 \ k\Omega$)	V _{(BR)CER}	-100	_	-	Vdc
Emitter–Base Breakdown Voltage $(I_E = -10 \ \mu Adc, I_C = 0)$	V _{(BR)EBO}	-5.0	_	-	Vdc
Collector-Base Cutoff Current ($V_{CB} = -30$ Vdc, $I_E = 0$)	I _{CBO}	_	_	-100	nAdc
Emitter–Base Cutoff Current ($V_{EB} = -5.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	_	-	-100	nAdc
ON CHARACTERISTICS					
$\begin{array}{l} \text{DC Current Gain} \\ (I_{C} = -5.0 \text{ mAdc}, V_{CE} = -2.0 \text{ Vdc}) \\ \text{All Part Types} \\ (I_{C} = -150 \text{ mAdc}, V_{CE} = -2.0 \text{ Vdc}) \\ \text{BCP53}, \text{SBCP53} \\ \text{BCP53-10}, \text{SBCP53-10} \\ \text{BCP53-16}, \text{SBCP53-16}, \text{NSVBCP53-16} \\ (I_{C} = -500 \text{ mAdc}, V_{CE} = -2.0 \text{ Vdc}) \\ \text{All Part Types} \end{array}$	h _{FE}	25 40 63 100 25		- 250 160 250 -	-
Collector–Emitter Saturation Voltage $(I_C = -500 \text{ mAdc}, I_B = -50 \text{ mAdc})$	V _{CE(sat)}	_	-	-0.5	Vdc
Base–Emitter On Voltage (I _C = -500 mAdc, V _{CE} = -2.0 Vdc)	V _{BE(on)}	_	-	-1.0	Vdc
DYNAMIC CHARACTERISTICS	· · ·				
Current–Gain – Bandwidth Product ($I_C = -10$ mAdc, $V_{CE} = -5.0$ Vdc, f = 35 MHz)	fT	_	50	_	MHz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdl/Patent_Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor dates free are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor sharelise, and expenses, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all cl

Phone: 421 33 790 2910

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

ical Support: Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

BCP53T1/D

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: BCP53-10T1G BCP53-16T1G BCP53T1G BCP53-16T3G SBCP53-16T1G NSVBCP53-16T3G