

Click to view price, real time Inventory, Delivery & Lifecycle Information ;

NLAS2750MUTAG

onsemi

Analog Switch ICs LOW VOLTAGE DUAL SPDT ANA

Any questions, please feel free to contact us. info@kaimte.com

Low Voltage Dual SPDT **Analog Switch with Negative Swing Audio** Capability

The NLAS2750 is a dual SPDT low on-resistance analog switch. It can operate from a single 1.8 V to 5.0 V power supply. It is a bi-directional switch that can switch a negative voltage swing audio signal without requiring a coupling capacitor. With a single power supply, the audio signal can swing over the range from -2.5 V to V_{CC}.

Features

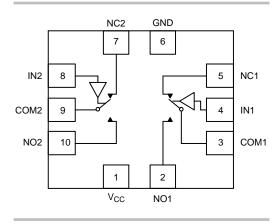
- Capable to Switch Negative Swing Audio Signals Without Requiring a DC Blocking Capacitor
- Low On-resistance (R_{ON})
- Low Voltage Digital Control Logic: $(V_{INH} = 1.4 \text{ V} @ V_{CC} = 2.7 \text{ V} \text{ to } 4.3 \text{ V})$
- Low Power Consumption ($I_{CC} \le 250 \text{ nA}$)
- Space Saving 1.4 mm x 1.8 mm Package UQFN Package
- This is a Pb–Free Device

Typical Applications

- Cellular Phones
- Portable Media Players

ON Semiconductor®

www.onsemi.com



- AL = Specific Device Code
- Μ = Date Code/Assembly Location

= Pb-Free Device

(Note: Microdot may be in either location)

FUNCTION TABLE

IN1 (Pin 4)	IN2 (Pin 8)	Function
0	Х	COM1 = NC1
1	Х	COM1 = NO1
Х	0	COM2 = NC2
Х	1	COM2 = NO2

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

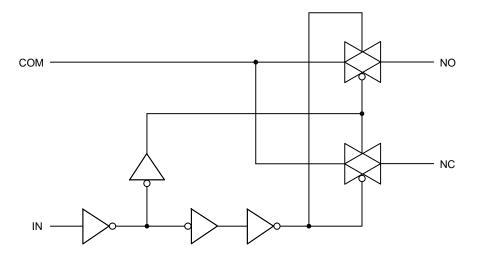


Figure 1. Logic Equivalent Circuit

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Positive DC Supply Voltage	-0.3 to +6.5	V
V _{IS}	Analog Input Voltage (COM, NO, NC) (Notes 1 and 2)	$\begin{array}{l} \mbox{Min. V}_{IS} = \mbox{V}_{CC} - 6.5 \mbox{ V or} \\ -2.5 \mbox{ V (whichever is greater)} \\ \mbox{Max. V}_{IS} = \mbox{V}_{CC} + 0.3 \mbox{ V} \end{array}$	V
V _{IN}	Digital (IN1, IN2)	-0.3 to +6.5	V
I _{CC}	Current (GND, V _{CC})	50	mA
I _{IS}	Continuous Switch Current (COM, NO, NC) (Note 1)	±250	mA
I _{ISP}	Peak Switch Current (Pulsed at 1 ms, 10% Duty Cycle)	±500	mA
T _{STG}	Storage Temperature	-65 to +150	°C
PD	Power Dissipation	200	mW
V _{ESD}	ESD (Human Body Model) All pins I/O to GND	6 8	kV
I _{LU}	Latch-up (per JESD78)	300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
Signals on COM, NO, NC, exceeding V_{CC} will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
The algebraic convention whereby the most negative value is a minimum and the most positive a maximum is used in this data sheet.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Power Supply Range	1.8	5.5	V
V _{IN}	Digital Select Input Voltage Overvoltage Tolerance (OVT) (IN1, IN2)	GND	5.5	V
V _{IS}	Analog Input Voltage (NC, NO, COM) (Note 3)	-2.5	V _{CC}	V
T _A	Operating Temperature Range	-40	+85	°C
t _r , t _f	Input Rise or Fall Time (IN1, IN2) $V_{CC} < 2.7 \text{ V}$ $V_{CC} \ge 2.7 \text{ V}$		20 10	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

3. The voltage across the switch should be \leq 5.5 V.

ELECTRICAL CHARACTERISTICS (V_{CC} = 2.7 V, \pm 10%) (Note 4)

Symbol	Parameter		Guaranteed Maximum Limit -40°C to 85°C			
		ANALOG SWIT	СН		-	-
V _{IS}	Analog Signal Range (Note 5)		-2.5		V _{CC}	V
R _{DS(on)}	On-Resistance	N 07N		0.6	1.3	Ω
ΔR_{ON}	On–Resistance Match	V _{CC} = 2.7 V, V _{IS} = (V _{CC} - 4.5 V), -1 V, 0 V		0.1		Ω
R _{ON} Flatness	On–Resistance Resistance Flatness	1 V, 2 V, V _{CC} I _{IS} = 100 mA		0.37		Ω
I _{NO/NC(off)}	Switch Off Leakage Current	$V_{CC} = 2.7 \text{ V},$ $V_{NC/NO} = -2.5 \text{ V or } 2.5 \text{ V},$ $V_{COM} = 2.5 \text{ V or } -2.5 \text{ V}$		50		nA
I _{COM(off)}					±250	nA
I _{COM(on)}	Channel On Leakage Current			50	±250	nA
DIGITAL CONT	ROL					
Vinili	Input Voltage High	$V_{CC} = 5 V$	16			V

V _{INH}	Input Voltage High	$V_{CC} = 5 V$ $V_{CC} = 2.7 V \text{ to } 4.3 V$	1.6 1.4			V
V _{INL}	Input Voltage Low	V_{CC} = 2.7 V to 5 V			0.6	V
C _{IN}	Input Capacitance			5		pF
I _{INL} or I _{INH}	Input Current	$V_{IN} = 0$ or V_{CC}			±1	μΑ

POWER CONSUMPTION

I _{CC}	Maximum Quiescent Supply Current	V_{CC} = 2.7 V to 4.3 V		50	±250	nA
-----------------	-------------------------------------	---------------------------	--	----	------	----

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product Product parametric performance is indicated in the Electrical Characteristics in the indicated test conditions, unless of the performance may not be indicated by the Electrical Characteristics if operated under different conditions.
 Typical values are measured at 25°C and are for design aid only, not guaranteed nor subject to production testing.
 Guaranteed by design, not subject to production testing.

DYNAMIC CHARACTERISTICS ($V_{CC} = 2.7 \text{ V}, \pm 10\%$) (Note 4)

			Guaranteed Maximum Limit		m Limit	
				–40°C to 85°C	;	
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{BBM}	Break–Before–Make Time (Notes 6 and 7)		1000	1250		ns
t _{ON(EN)}	Enable Turn–On Time (Notes 6 and 7)	V_{CC} = 2.7 V, V_{IS} = 1.5 V, R _L = 50 Ω, C _L = 35 pF		80	150	ns
t _{OFF(EN)}	Enable Turn–Off Time (Notes 6 and 7)			110	130	ns
Q _{INJ}	Charge Injection (Note 6)	$\begin{array}{l} C_{L} = 1 \text{ nF, } R_{GEN} = 0 \ \Omega, \\ V_{GEN} = 0 \ V \end{array}$		60		рС
OIRR	Off-Isolation (Note 6)	$V_{CC} = 2.7 \text{ V}, \text{ R}_1 = 50 \Omega,$		-58		dB
X _{TALK}	Crosstalk (Notes 6 and 8)	$C_{L} = 5 \text{ pF}, \text{ f} = \overline{3}00 \text{ kHz}$		-61		dB
BW	Bandwidth (Note 6)	V_{CC} = 2.7 V, R_L = 50 Ω , -3 dB		44		MHz
C _{NC/NO(off)}	Channel–Off Capacitance (Note 6)	V _{CC} = 2.7 V, f = 1 MHz		25		pF
C _{COM/NC/NO(on)}	Channel–On Capacitance (Note 6)			75		pF

Guaranteed by design, not subject to production testing.
 V_{IS} = input voltage to perform proper function.
 Crosstalk Measured between channels.

TYPICAL CHARACTERISTICS

(25°C, unless otherwise specified)

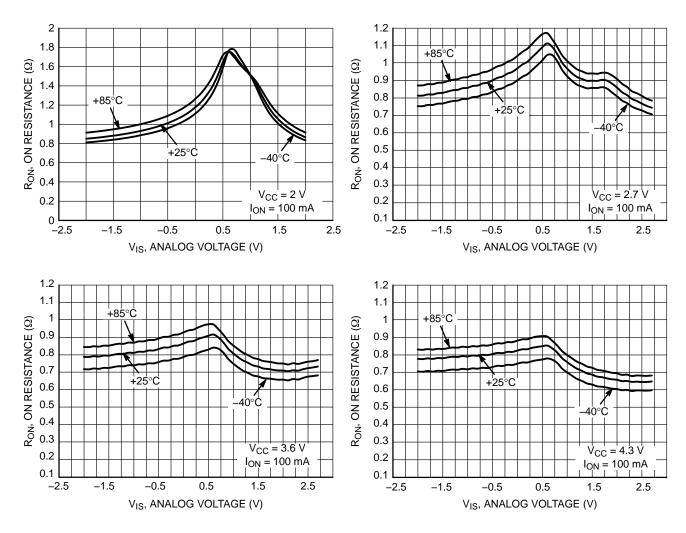
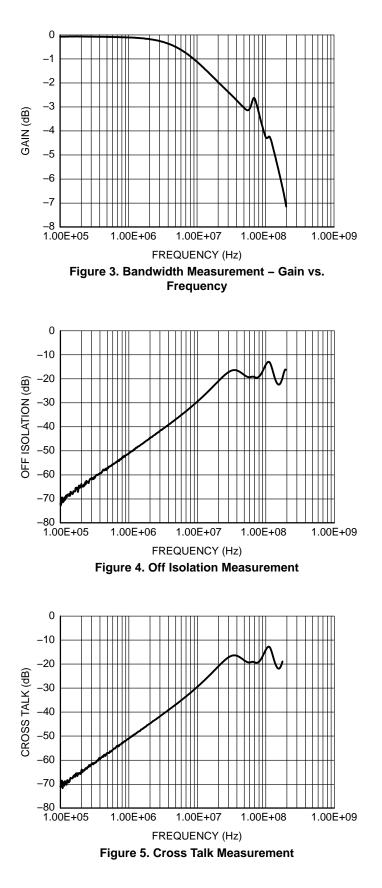
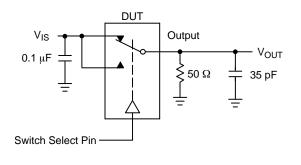
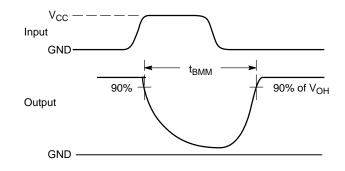
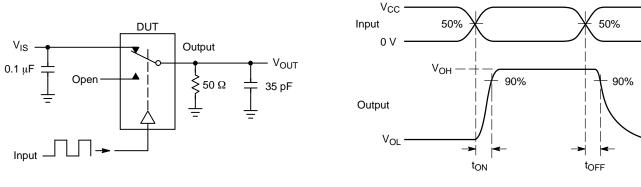
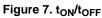



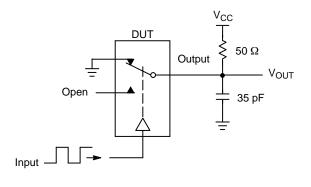
Figure 2. On Resistance (R_{ON}) vs. Analog Input Voltage (V_{IS})


TYPICAL CHARACTERISTICS


(25°C, unless otherwise specified)


www.onsemi.com 5


TEST CIRCUITS



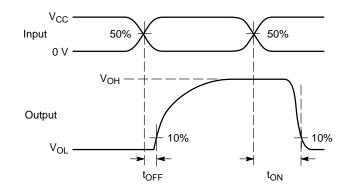
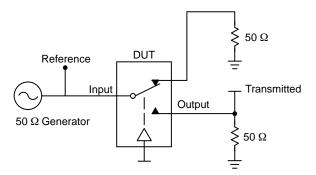
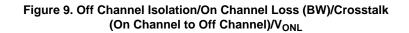
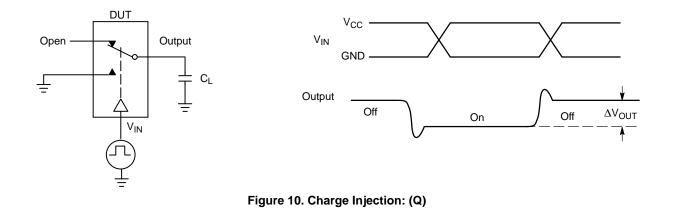



Figure 8. t_{ON}/t_{OFF}

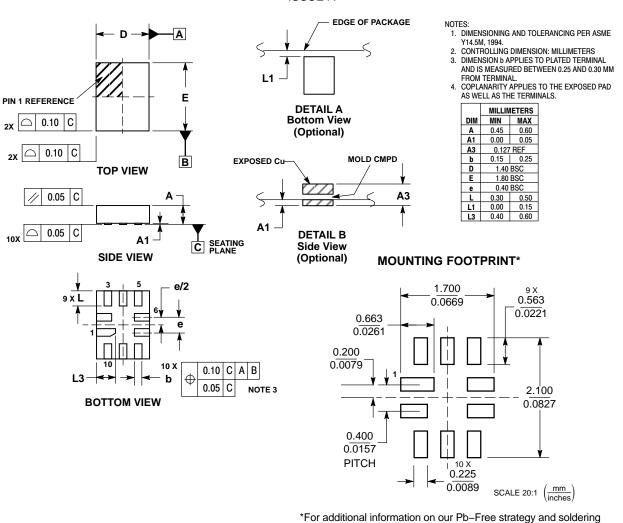

www.onsemi.com 6



Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.

$$\begin{split} &V_{ISO} = \text{Off Channel Isolation} = 20 \text{ Log} \Big(\frac{V_{OUT}}{V_{IN}} \Big) \text{for } V_{IN} \text{ at } 100 \text{ kHz} \\ &V_{ONL} = \text{On Channel Loss} = 20 \text{ Log} \Big(\frac{V_{OUT}}{V_{IN}} \Big) \text{ for } V_{IN} \text{ at } 100 \text{ kHz to } 50 \text{ MHz} \end{split}$$

Bandwidth (BW) = the frequency 3 dB below V_{ONL} V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω


ORDERING INFORMATION

Device	Package	Shipping [†]
NLAS2750MUTAG	UQFN10 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

UQFN10 1.4x1.8, 0.4P CASE 488AT ISSUE A

For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NLAS2750/D

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NLAS2750MUTAG