Kaimeite Electronic (HK) Co., Limited
First choice One-Stop Mixed Distributor for World-Class manufacturer Email: info@kaimte.com Website: www.kaimte.com

Click to view price, real time Inventory, Delivery & Lifecycle Information;

SN65EPT21DR

Texas instruments

LVDS Interface IC 3.3V ECL Diff Rcvr

Any questions, please feel free to contact us. info@kaimte.com

www.ti.com SLLS970 – NOVEMBER 2009

3.3-V Differential PECL/LVDS to TTL Translator

Check for Samples: SN65EPT21

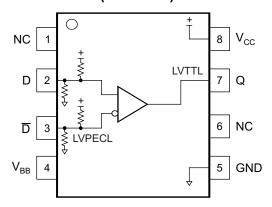
FEATURES

- 1 ns Propagation Delay
- F_{max} > 300MHz
- Operating Range: V_{CC} = 3.0 V to 3.6 V with GND = 0 V
- 24-mA TTL Output
- Built-In Temperature Compensation
- Drop-In Compatible to the MC10EPT21, MC100EPT21

APPLICATIONS

- Data and Clock Transmission Over Backplane
- Signaling Level Conversion for Clock or Data

DESCRIPTION


The SN65EPT21 is a differential PECL-to-TTL translator. It operates on +3.3 V supply and ground only. The device includes circuitry to maintain inputs at Vcc/2 when left open.

The V_{BB} pin is a reference voltage output for the device. When the device is used in single-ended mode, the unused input should be tied to V_{BB} . This reference voltage can also be used to bias the input when it is ac coupled. When it is used, place a 0.01µF decoupling capacitor between V_{CC} and V_{BB} . Also limit the sink/source current to < 0.5 mA to V_{BB} . Leave V_{BB} open when it is not used.

The SN65EPT21 is housed in an industry standard SOIC-8 package and is also available in an optional TSSOP-8 package.

PIN ASSIGNMENT(Add pullup on BOTH inputs)

D or DGK PACKAGE (TOP VIEW)

Table 1. Pin Descriptions

PIN	FUNCTION
Q	LVTTL/LVCMOS Output
D, \overline{D}	Differential LVPECL/LVDS/CML Input
V_{CC}	Positive Supply
V_{BB}	Output Reference Voltage
GND	Ground
NC	No Connect
EP	(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

ORDERING INFORMATION(1)

PART NUMBER	PART MARKING	LEAD FINISH	
SN65EPT21D/DR	EPT21	SOIC	NiPdAu
SN65EPT21DGK/DGKR	SSSI	MSOP	NiPdAu

(1) Leaded device options are not initially available; contact a sales representative for further details.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLLS970 – NOVEMBER 2009 www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS(1)

PARAMETER	CONDITIONS	VALUE	UNIT
Absolute PECL mode supply voltage	V _{CC} (GND = 0 V)	3.8	V
Sink/source current, V _{BB}		±0.5	mA
PECL input voltage	$GND = 0 V, V_1 \le V_{CC}$	0 to 3.8	V
Operating temperature range		-40 to 85	°C
Storage temperature range		-65 to 150	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATINGS

PACKAGE	CIRCUIT BOARD MODEL	POWER RATING T _A < 25°C (mW)	THERMAL RESISTANCE, JUNCTION-TO-AMBIENT NO AIRFLOW	DERATING FACTOR T _A > 25°C (mW/°C)	POWER RATING T _A = 85°C (mW)
SOIC	Low-K	719	139	7	288
	High-K	840	119	8	336
MSOP	Low-K	469	213	5	188
	High-K	527	189	5	211

THERMAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

		,				
	PARAM	MIN	TYP	MAX	UNIT	
θ_{JB}	Junction-to-board thermal resistance	SOIC		79		°C/W
		MSOP		120		
θ_{JC}	Junction-to-case thermal resistance	SOIC		98		°C/W
		MSOP		74		

KEY ATTRIBUTES

CHARACTERISTICS		VALUE			
Internal input pull-down resistor		50 kΩ			
Internal input pull-up resistor		50 kΩ			
Moisture sensitivity level	•				
Flammability rating (oxygen index: 28	3 to 34)	Level 1 UL 94 V-0 at 0.125 in			
Electrostatic discharge	Human body model	2 kV			
	Charged-device model	2 kV			
	Machine mode	200 V			

Submit Documentation Feedback

Product Folder Link(s): SN65EPT21

www.ti.com SLLS970 – NOVEMBER 2009

PECL DC CHARACTERISTICS

At $V_{CC} = 3.3 \text{ V}$, GND = 0.0 V (unless otherwise noted)⁽¹⁾ (2)

	PARAMETER	TEST CONDITIONS	T _A = -40°C			T _A = 25°C			T _A = 85°C			UNIT
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V _{IH}	High-level input voltage, single-ended		2075		2420	2075		2420	2075		2420	mV
V _{IL}	Low-level input voltage, single-ended		1355		1675	1355		1675	1355		1675	mV
V_{BB}	Output reference voltage		1910	2009	2160	1910	2034	2160	1910	2026	2160	mV
V _{IHCM} R	High-level input voltage, common-mode range, differential	See (3)	1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	High-level input current				150			150			150	μΑ
I _{IL}	Low-level input current		-150			-150			-150			μΑ

⁽¹⁾ The device will meet the specifications after thermal balance has been established when mounted in a socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are assured only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

(2) Input parameters vary 1:1 with V_{CC}.

TTL DC CHARACTERISTICS

At $V_{CC} = 3.3 \text{ V}$, GND = 0.0, $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{CCH}	Power supply current	Output is HIGH	5	9	20	mA
I _{CCL}	Power supply current	Output is LOW	8	7.5	26	mA
V_{OH}	High-level output voltage	$I_{OH} = -3.0 \text{ mA}$	2.4	3.05		V
V_{OL}	Low-level output voltage	IOL = 24 mA		0.32	0.5	V
Ios	Output short circuit current		-180	-100	-80	mA

⁽¹⁾ The device will meet the specifications after thermal balance has been established when mounted in a socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are assured only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

AC CHARACTERISTICS

At $V_{CC} = 3.0 \text{ V}$ to 3.6 V, GND = 0.0 V (unless otherwise noted)⁽¹⁾ (2)

	DADAMETED	TEST CONDITIONS	$T_A = -4$			T_A	$T_A = 25^{\circ}C$		T _A = 85°C			UNIT
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
f _{MAX}	Maximum switching frequency (Figure 1–Figure 3)		300			300			300			MHz
t _{PLH}	Propagation delay	At 1.5 V	1000	1394	1800	1000	1444	1800	1000	1481	1800	ps
t _{PHL}	Propagation delay	At 1.5 V	1000	1140	1900	1000	1280	1900	1000	1421	1900	ps
t _{JITTER}	Random clock jitter (RMS)			2.25	5		3.2	5		3.4	5	ps
t _{SKEW}	Duty Cycle Skew ⁽³⁾			94	250		78	250		62	250	ps
t _{SKPP}	Part-to-Part Skew ⁽³⁾				500			500			500	ps
V_{PP}	Input swing	See (4)	150		1200	150		1200	150		1200	mV
t _r /t _f	Output rise/fall times	Q, Q (0.8V - 2.0V))	250	500	900	250	500	900	250	500	900	ps

⁽¹⁾ The device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are assured only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Product Folder Link(s): SN65EPT21

⁽³⁾ V_{IHCMR(min)} varies 1:1 with GND, V_{IHCMR(max)} varies 1:1 with V_{CC}. V_{IHCMR} range is referenced to the most positive side of the differential input signal

⁽²⁾ R_L = 500 Ω to GND and C_L = 20 pF to GND. See Figure 4. Measured with 750mV, 50% duty cycle clock source

⁽³⁾ Skews are measured between outputs under identical transitions

⁽⁴⁾ V_{PP(min)} is minimum input swing for which ac parameters are assured.

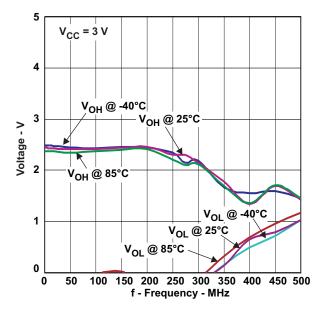


Figure 1. Maximum Switching Frequency V_{CC}= 3.0 V

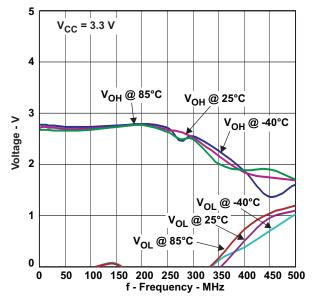


Figure 2. Maximum Switching Frequency V_{CC}= 3.3 V

www.ti.com SLLS970 - NOVEMBER 2009

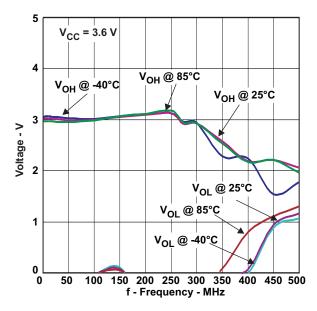


Figure 3. Maximum Switching Frequency V_{CC}= 3.6 V

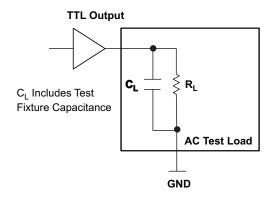


Figure 4. TTL Output AC Test Loading Condition

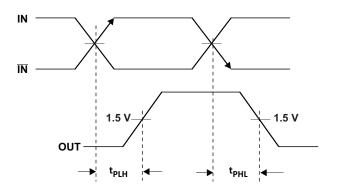


Figure 5. Output Propagation Delay

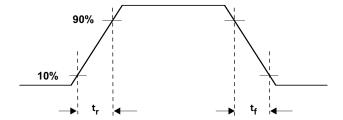


Figure 6. Output Rise and Fall Times

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	0
SN65EPT21D	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	
SN65EPT21DGK	ACTIVE	VSSOP	DGK	8	80	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	
SN65EPT21DGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	Call TI NIPDAU	Level-1-260C-UNLIM	
SN65EPT21DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

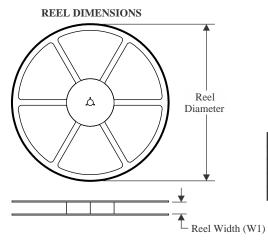
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including to not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in spreference these types of products as "Pb-Free".

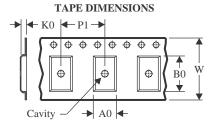
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000pp flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a lift of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/files if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information

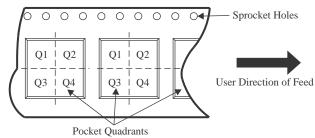
Addendum-Page 1


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis of TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer of

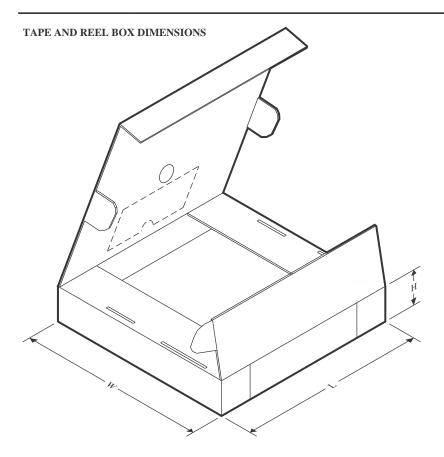
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

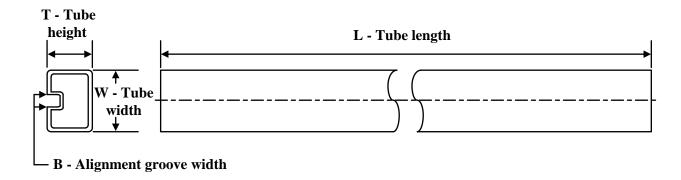


*All dimensions are nominal

	Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ĺ	SN65EPT21DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

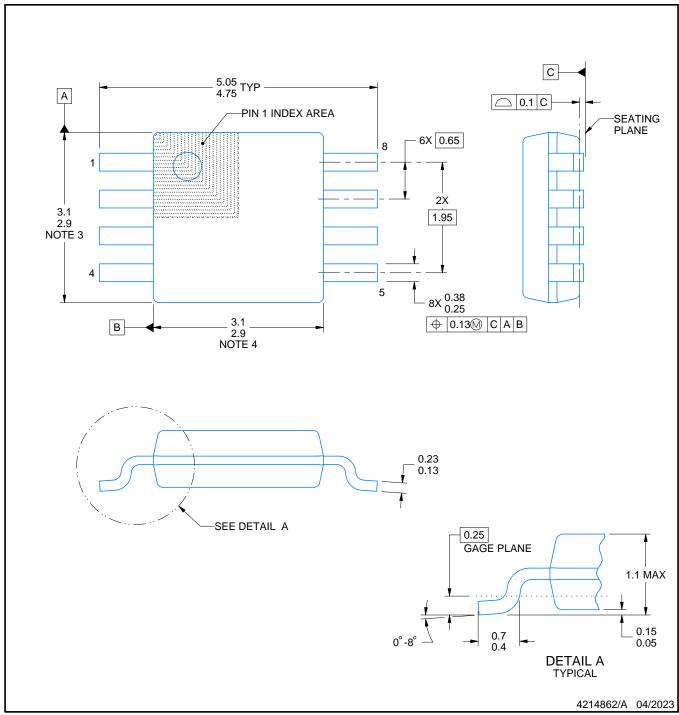

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65EPT21DR	SOIC	D	8	2500	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

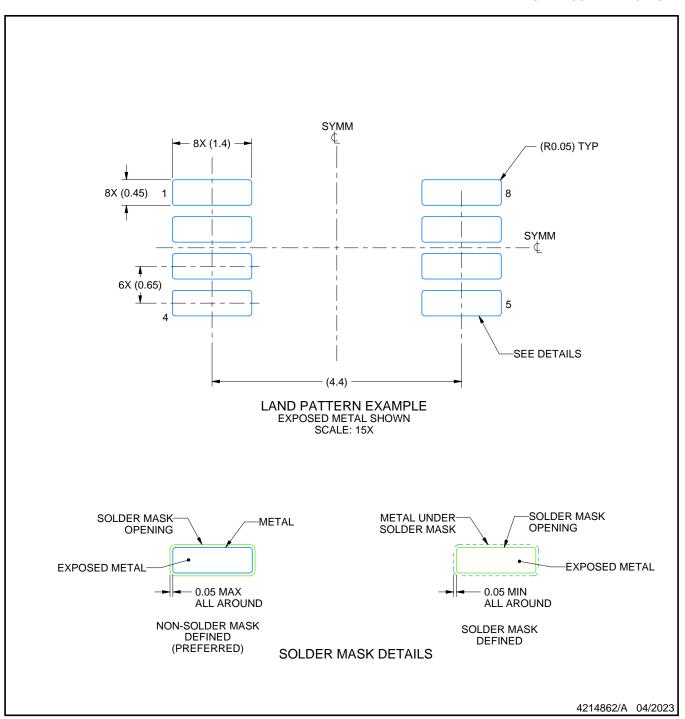
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN65EPT21D	D	SOIC	8	75	506.6	8	3940	4.32
SN65EPT21DGK	DGK	VSSOP	8	80	330.2	6.6	3005	1.88

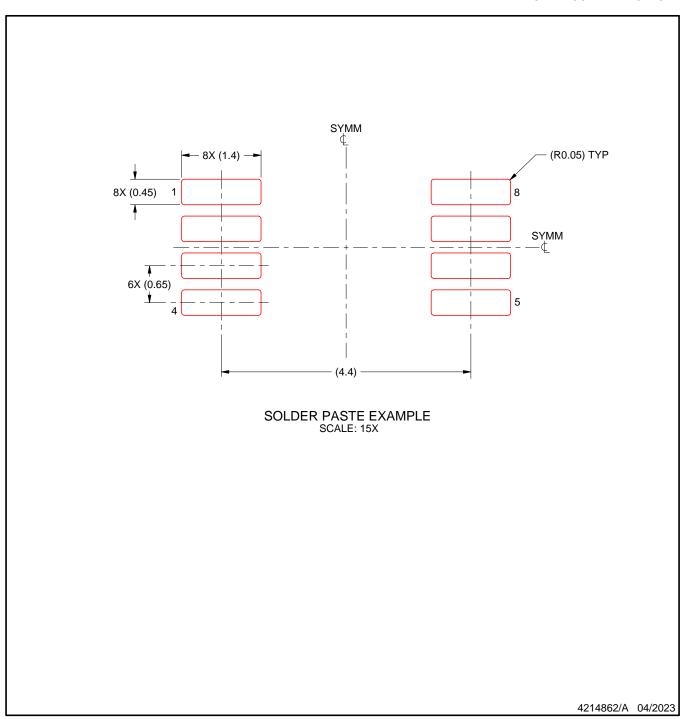
SMALL OUTLINE PACKAGE


NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

SMALL OUTLINE PACKAGE

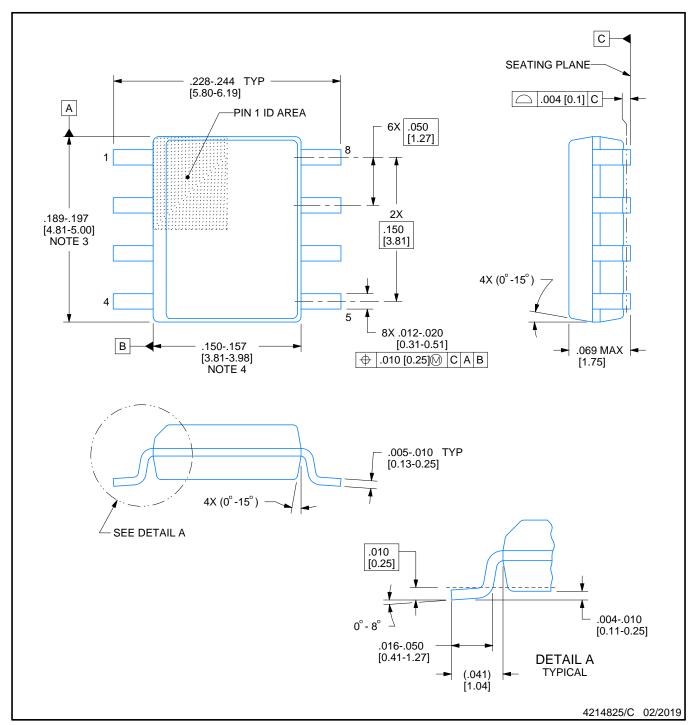


NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

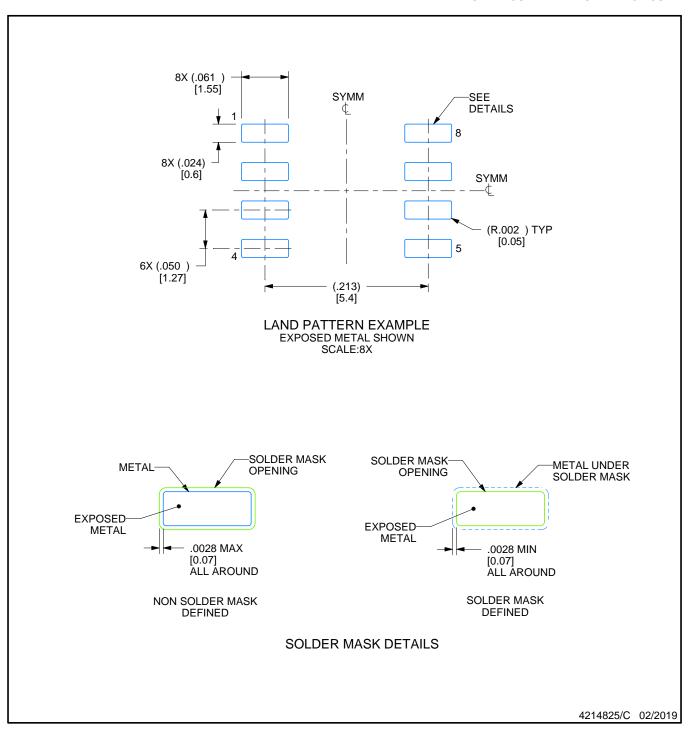
SMALL OUTLINE PACKAGE

NOTES: (continued)


- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.12. Board assembly site may have different recommendations for stencil design.

PACKAGE OUTLINE

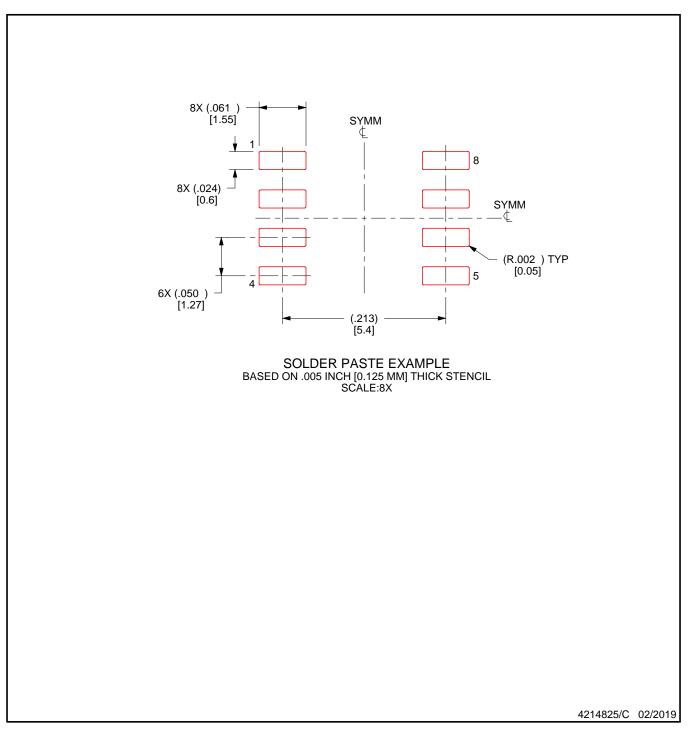
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
 This dimension does not include interlead flash.
 Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated