Click to view price, real time Inventory, Delivery \& Lifecycle Information ;

OPA2735AIDR

Texas instruments

Operational Amplifiers - Op Amps $0.05 \mathrm{uV} / \mathrm{deg} \mathrm{C}$ single- supply CMOS

Any questions,please feel free to contact us.
info@kaimte.com

$0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max, SINGLE-SUPPLY CMOS OPERATIONAL AMPLIFIERS Zerø-Drift Series

FEATURES

- LOW OFFSET VOLTAGE: $5 \mu \mathrm{~V}$ (max)
- ZERO DRIFT: $0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
- QUIESCENT CURRENT: 750 $\mu \mathrm{A}$ (max)
- SINGLE-SUPPLY OPERATION
- LOW BIAS CURRENT: 200pA (max)
- SHUTDOWN
- MicroSIZE PACKAGES
- WIDE SUPPLY RANGE: 2.7V to 12V

APPLICATIONS

- TRANSDUCER APPLICATIONS
- TEMPERATURE MEASUREMENTS
- ELECTRONIC SCALES
- MEDICAL INSTRUMENTATION
- BATTERY-POWERED INSTRUMENTS
- HANDHELD TEST EQUIPMENT

DESCRIPTION

The OPA734 and OPA735 series of CMOS operational amplifiers use auto-zeroing techniques to simultaneously provide low offset voltage ($5 \mu \mathrm{~V}$ max) and near-zero drift over time and temperature. These miniature, high-precision, low quiescent current amplifiers offer high input impedance and rail-to-rail output swing within 50 mV of the rails. Either single or bipolar supplies can be used in the range of +2.7 V to $+12 \mathrm{~V}(\pm 1.35 \mathrm{~V}$ to $\pm 6 \mathrm{~V})$. They are optimized for low-voltage, single-supply operation.
The OPA734 family includes a shutdown mode. Under logic control, the amplifiers can be switched from normal operation to a standby current that is $9 \mu \mathrm{~A}(\max)$ and the output placed in a high-impedance state.
The single version is available in the MicroSIZE SOT23-5 (SOT23-6 for shutdown version) and the SO-8 packages. The dual version is available in the MSOP-8 and SO-8 packages (MSOP-10 only for the shutdown version). All versions are specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.

ABSOLUTE MAXIMUM RATINGS(1)

Supply Voltage	$+13.2 \mathrm{~V}$
Signal Input Terminals, Voltage ${ }^{(2)}$	$(\mathrm{V}-)-0.5 \mathrm{~V}$ to $(\mathrm{V}+)+0.5 \mathrm{~V}$
Current ${ }^{(2)}$	$\pm 10 \mathrm{~mA}$
Output Short Circuit(3)	Continuous
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$
ESD Rating (Human Body Model), OPA734	1000V
	4, OPA2735 2000V

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should be current limited to 10 mA or less.
(3) Short-circuit to ground, one amplifier per package.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION(1)

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
Shutdown Version OPA734 " OPA734 " OPA2734 "	$\begin{gathered} \text { SOT23-6 } \\ \text { " } \\ \text { SO-8 } \\ " \\ \text { MSOP-10 } \end{gathered}$	$\begin{gathered} \text { DBV } \\ \prime \prime \\ \text { D } \\ \prime \prime \\ \text { DGS } \\ \hline \prime \end{gathered}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { " } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	NSB OPA734A BGO	OPA734AIDBVT OPA734AIDBVR OPA734AID OPA734AIDR OPA2734AIDGST OPA2734AIDGSR	Tape and Reel, 250 Tape and Reel, 3000 Rails, 100 Tape and Reel, 2500 Tape and Reel, 250 Tape and Reel, 2500
Non-Shutdown Version OPA735 OPA735 " OPA2735 " OPA2735 "	SOT23-5 SO-8 SO-8 MSOP-8	$\begin{gathered} \text { DBV } \\ \prime \prime \\ \text { D } \\ \prime \prime \\ \text { D } \\ \prime \prime \\ \text { " } \end{gathered}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { " } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ { }^{\prime \prime} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	NSC OPA735A OPA2735A BGN	OPA735AIDBVT OPA735AIDBVR OPA735AID OPA735AIDR OPA2735AID OPA2735AIDR OPA2735AIDGKT OPA2735AIDGKR	Tape and Reel, 250 Tape and Reel, 3000 Rails, 100 Tape and Reel, 2500 Rails, 100 Tape and Reel, 2500 Tape and Reel, 250 Tape and Reel, 2500

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}\right)$
Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, and $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

PARAMETER		CONDITIONS	OPA734, OPA2734, OPA735, OPA2735			UNIT
			MIN	TYP	MAX	
OFFSET VOLTAGE Input Offset Voltage vs Temperature vs Power Supply Long-Term Stability Channel Separation, dc	V_{OS} dVos/dT PSRR	$\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$ to 12V, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		$\begin{gathered} 1 \\ 0.01 \\ 0.2 \\ \text { Note (1) } \\ 0.1 \end{gathered}$	$\begin{gathered} 5 \\ 0.05 \\ 1.8 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathbf{C}$ $\mu \mathrm{V} / \mathbf{V}$ $\mu \mathrm{V} / \mathrm{V}$
INPUT BIAS CURRENT Input Bias Current over Temperature Input Offset Current	${ }^{\prime} B$ IOS	$\begin{aligned} & \mathrm{v}_{\mathrm{CM}}=\mathrm{v}_{\mathrm{S}} / 2 \\ & \mathrm{v}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	See	± 100 ical Charact ± 200	$\begin{gathered} \pm 200 \\ \text { stics } \\ \pm 300 \end{gathered}$	$\begin{aligned} & \text { pA } \\ & \text { pA } \\ & \text { pA } \end{aligned}$
NOISE Input Voltage Noise, $f=0.01 \mathrm{~Hz}$ to 1 Hz Input Voltage Noise, $\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz Input Voltage Noise Density, $f=1 \mathrm{kHz}$ Input Current Noise Density, $\mathrm{f}=1 \mathrm{kHz}$	e_{n} e_{n} e_{n} i_{n}			$\begin{gathered} 0.8 \\ 2.5 \\ 135 \\ 40 \end{gathered}$		$\mu \mathrm{V}_{\mathrm{PP}}$ $\mu V_{P P}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{fA} / \sqrt{\mathrm{Hz}}$
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio	V_{CM} CMRR	(V-) - 0.1V < $\mathrm{V}_{\mathrm{CM}}<\left(\mathrm{V}_{+}\right)-1.5 \mathrm{~V}$	$\begin{gathered} (\mathrm{V}-)-0.1 \\ 115 \end{gathered}$	130	(V+)-1.5	$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \end{gathered}$
INPUT CAPACITANCE Differential Common-Mode				$\begin{gathered} 2 \\ 10 \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
OPEN-LOOP GAIN Open-Loop Voltage Gain	AOL	(V-) + 100mV $<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+$) - 100mV	115	130		dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate	GBW SR	$G=+1$		$\begin{aligned} & 1.6 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
OUTPUT Voltage Output Swing from Rail Short-Circuit Current Open-Loop Output Impedance Capacitive Load Drive	$\begin{array}{r} \text { ISC } \\ \mathrm{C}_{\text {LOAD }} \end{array}$	$\begin{gathered} \mathbf{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ \mathrm{f}=1 \mathrm{MHz}, \mathrm{I}_{\mathrm{O}}=0 \end{gathered}$		20 ± 20 125 pical Charact	50 stics	$\begin{gathered} \mathrm{mV} \\ \mathrm{~mA} \\ \Omega \end{gathered}$
ENABLE/SHUTDOWN toff ton ${ }^{(2)}$ V_{L} (amplifier is shutdown) V_{H} (amplifier is active) ${ }^{\text {Q QSD }}$ (per amplifier) Input Bias Current of Enable Pin			$\begin{gathered} \mathrm{V}- \\ (\mathrm{V}-)+2 \end{gathered}$	$\begin{gathered} 1.5 \\ 150 \\ \\ 4 \\ 3 \end{gathered}$	$\begin{gathered} (\mathrm{V}-)+0.8 \\ \mathrm{~V}_{+} \\ 9 \end{gathered}$	
POWER SUPPLY Operating Voltage Range Quiescent Current (per amplifier)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}} \\ & \mathrm{I}_{\mathbf{Q}} \end{aligned}$	$10=0$		$\begin{gathered} 2.7 \text { to } 12 \\ (\pm 1.35 \text { to } \pm 6) \\ 0.6 \end{gathered}$	0.75	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \end{gathered}$
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SOT23-5, SOT23-6 MSOP-8, MSOP-10, SO-8	θ^{\prime} A		$\begin{aligned} & -40 \\ & -40 \\ & -65 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & +85 \\ & +150 \\ & +150 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$

[^0]
PIN CONFIGURATIONS

(1) NC = No Connection
(2) Pin 1 of the SOT23-6 is determined by orienting the package marking as shown in the diagram.

TYPICAL CHARACTERISTICS

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ (same as +10 V).

TYPICAL CHARACTERISTICS (continued)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ (same as +10 V).

Time (250ns/div)

Time ($2.5 \mu \mathrm{~s} / \mathrm{div}$)

Time ($2.5 \mu \mathrm{~s} / \mathrm{div}$)

TYPICAL CHARACTERISTICS (continued)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ (same as +10 V).

APPLICATIONS INFORMATION

The OPA734 and OPA735 series of op amps are unity-gain stable and free from unexpected output phase reversal. They use auto-zeroing techniques to provide low offset voltage and demonstrate very low drift over time and temperature.

Good layout practice mandates the use of a $0.1 \mu \mathrm{~F}$ capacitor placed closely across the supply pins.

For lowest offset voltage and precision performance, circuit layout and mechanical conditions should be optimized. Avoid temperature gradients that create thermoelectric (Seebeck) effects in thermocouple junctions formed from connecting dissimilar conductors. These thermally-generated potentials can be made to cancel by assuring that they are equal on both input terminals:

1. Use low thermoelectric-coefficient connections (avoid dissimilar metals).
2. Thermally isolate components from power supplies or other heat sources.
3. Shield op amp and input circuitry from air currents such as cooling fans.

Following these guidelines will reduce the likelihood of junctions being at different temperatures, which can cause thermoelectric voltages of $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ or higher, depending on the materials used.

OPERATING VOLTAGE

The OPA734 and OPA735 op amp family operates with a power-supply range of +2.7 V to $+12 \mathrm{~V}(\pm 1.35 \mathrm{~V}$ to $\pm 6 \mathrm{~V})$. Supply voltages higher than +13.2 V (absolute maximum) can permanently damage the amplifier. Parameters that vary over supply voltage or temperature are shown in the Typical Characteristics section of this data sheet.

OPA734 ENABLE FUNCTION

The enable/shutdown digital input is referenced to the V supply voltage of the op amp. A logic HIGH enables the op amp. A valid logic HIGH is defined as $>(\mathrm{V}-)+2 \mathrm{~V}$. The valid logic HIGH signal can be up to the positive supply, independent of the negative power supply voltage. A valid logic LOW is defined as $<0.8 \mathrm{~V}$ above the V - supply pin. If dual or split power supplies are used, be sure that logic input signals are properly referred to the negative supply voltage. The Enable pin is connected to internal pull-up circuitry and will enable the device if this pin is left open circuit.

The logic input is a CMOS input. Separate logic inputs are provided for each op amp on the dual version. For battery-operated applications, this feature can be used to greatly reduce the average current and extend battery life.
The enable time is $150 \mu \mathrm{~s}$, which includes one full auto-zero cycle required by the amplifier to return to V_{OS} accuracy. Prior to returning to full accuracy, the amplifier may function properly, but with unspecified offset voltage.

Disable time is $1.5 \mu \mathrm{~s}$. When disabled, the output assumes a high-impedance state. The disable state allows the OPA734 to be operated as a gated amplifier, or to have the output multiplexed onto a common analog output bus.

INPUT VOLTAGE

The input common-mode range extends from (V-) - 0.1 V to $(\mathrm{V}+)-1.5 \mathrm{~V}$. For normal operation, the inputs must be limited to this range. The common-mode rejection ratio is only valid within the specified input common-mode range. A lower supply voltage results in lower input commonmode range; therefore, attention to these values must be given when selecting the input bias voltage. For example, when operating on a single 3 V power supply, commonmode range is from 0.1 V below ground to half the power-supply voltage.

Normally, input bias current is approximately 100pA; however, input voltages exceeding the power supplies can cause excessive current to flow in or out of the input pins. Momentary voltages greater than the power supply can be tolerated if the input current is limited to 10 mA . This is easily accomplished with an input resistor, as shown in Figure 1.

Figure 1. Input Current Protection

INTERNAL OFFSET CORRECTION

The OPA734 and OPA735 series of op amps use an auto-zero topology with a time-continuous 1.6 MHz op amp in the signal path. This amplifier is zero-corrected every $100 \mu s$ using a proprietary technique. Upon power-up, the amplifier requires one full auto-zero cycle of approximately 100μ in addition to the start-up time for the bias circuitry to achieve specified $V_{\text {OS }}$ accuracy. Prior to this time, the amplifier may function properly but with unspecified offset voltage.

Low-gain (<20) operation demands that the auto-zero circuitry correct for common-mode rejection errors of the main amplifier. Because these errors can be larger than 0.1% of a full-scale input step change, one calibration cycle $(100 \mu \mathrm{~s})$ can be required to achieve full accuracy.

The term clock feedthrough describes the presence of the clock frequency in the output spectrum. In auto-zeroed op amps, clock feedthrough may result from the settling of the internal sampling capacitor, or from the small amount of charge injection that occurs during the sample-and-hold of the op amp offset voltage. Feedthrough can be minimized by keeping the source impedance relatively low (<1k) and matching the source impedance on both input terminals. If the source resistance is high (> $1 \mathrm{k} \Omega$) feedthrough can generally be reduced with a capacitor of 1 nF or greater in parallel with the source or feedback resistors. See the circuit application examples.

LAYOUT GUIDELINES

Attention to good layout practices is always recommended. Keep traces short. When possible, use a PCB ground plane with surface-mount components placed as close to the device pins as possible. Place a $0.1 \mu \mathrm{~F}$ capacitor closely across the supply pins. These guidelines should be applied throughout the analog circuit to improve performance and provide benefits such as reducing the electromagnetic-interference (EMI) susceptibility.

Figure 2. Single Op Amp Bridge Amplifier Circuit

Figure 3. Differential Output Bridge Amplifier

$\mathbf{V}_{\mathbf{I N}}$	$\mathbf{V}_{\mathbf{R E F}}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
$\pm 10 \mathrm{~V}$	5 V	$42.2 \mathrm{k} \Omega$	$14.7 \mathrm{k} \Omega$
$\pm 5 \mathrm{~V}$	5 V	$20.8 \mathrm{k} \Omega$	$19.6 \mathrm{k} \Omega$
0 V to 10 V	5 V	$20.8 \mathrm{k} \Omega$	$5.11 \mathrm{k} \Omega$
0 V to 5 V	5 V	$10.5 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$

Figure 4. Driving ADC

Figure 5. Thermopile Non-Contact Surface Temperature Measurement

Figure 6. Twin-T Notch Filter

NOTE: FilterPro is a low-pass filter design program available for download at no cost from TI's web site (www.ti.com).
The program can be used to easily determine component values for other cutoff frequencies or filter types.
Figure 7. High DC Accuracy, 3-Pole Low-Pass Filter

Figure 8. Precision Full-Wave Rectifier with Full Dynamic Range

Enable inputs are CMOS logic compatible.

Figure 9. High-Precision 2-Input MUX for Programmable Gain

Figure 10. Low-Side Power-Supply Current Sensing

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)
OPA2734AIDGSR	ACTIVE	VSSOP	DGS	10	2500	RoHS \& Green	Call TI \| NIPDAUAG	Level-2-260C-1 YEAR
OPA2734AIDGST	ACTIVE	VSSOP	DGS	10	250	RoHS \& Green	Call TI \| NIPDAUAG	Level-2-260C-1 YEAR
OPA2735AID	ACTIVE	SOIC	D	8	75	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR
OPA2735AIDG4	ACTIVE	SOIC	D	8	75	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR
OPA2735AIDGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS \& Green	Call TI \| NIPDAUAG	Level-2-260C-1 YEAR
OPA2735AIDGKT	ACTIVE	VSSOP	DGK	8	250	RoHS \& Green	Call TI \| NIPDAUAG	Level-2-260C-1 YEAR
OPA2735AIDR	ACTIVE	SOIC	D	8	2500	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR
OPA734AID	ACTIVE	SOIC	D	8	75	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR
OPA734AIDBVR	ACTIVE	SOT-23	DBV	6	3000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR
OPA734AIDBVT	ACTIVE	SOT-23	DBV	6	250	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR
OPA735AID	ACTIVE	SOIC	D	8	75	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR
OPA735AIDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR
OPA735AIDBVRG4	ACTIVE	SOT-23	DBV	5	3000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR
OPA735AIDBVT	ACTIVE	SOT-23	DBV	5	250	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR
OPA735AIDBVTG4	ACTIVE	SOT-23	DBV	5	250	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR
OPA735AIDR	ACTIVE	SOIC	D	8	2500	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in s reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000pp flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a lir of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/E lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. Tl bases its provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate informatior continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis o TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI 's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer o

PACKAGE MATERIALS INFORMATION

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
OPA2735AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA734AIDBVR	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
OPA734AIDBVT	SOT-23	DBV	6	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
OPA735AIDBVR	SOT-23	DBV	5	3000	178.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
OPA735AIDBVT	SOT-23	DBV	5	250	178.0	8.4	3.3	3.2	1.4	4.0	8.0	Q3
OPA735AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION
INSTRUMENTS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA2735AIDR	SOIC	D	8	2500	356.0	356.0	35.0
OPA734AIDBVR	SOT-23	DBV	6	3000	445.0	220.0	345.0
OPA734AIDBVT	SOT-23	DBV	6	250	445.0	220.0	345.0
OPA735AIDBVR	SOT-23	DBV	5	3000	565.0	140.0	75.0
OPA735AIDBVT	SOT-23	DBV	5	250	565.0	140.0	75.0
OPA735AIDR	SOIC	D	8	2500	356.0	356.0	35.0

TUBE

B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T ($\boldsymbol{\mu m}$)	B (mm)
OPA2735AID	D	SOIC	8	75	506.6	8	3940	4.32
OPA2735AIDG4	D	SOIC	8	75	506.6	8	3940	4.32
OPA734AID	D	SOIC	8	75	506.6	8	3940	4.32
OPA735AID	D	SOIC	8	75	506.6	8	3940	4.32

4214862/A
NOTES:
PowerPAD is a trademark of Texas Instruments.

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-187.

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE: 15X

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
9. Size of metal pad may vary due to creepage requirement

SOLDER PASTE EXAMPLE
SCALE: 15X

NOTES: (continued)

11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
12. Board assembly site may have different recommendations for stencil design.

ALTERNATIVE PACKAGE SINGULATION VIEW

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.
4. Leads $1,2,3$ may be wider than leads $4,5,6$ for package orientation.
5. Refernce JEDEC MO-178.

LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X

SOLDER MASK DETAILS

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:15X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

0.23
0.13

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-187, variation BA.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

SCALE:10X

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

ALTERNATIVE PACKAGE SINGULATION VIEW

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Refernce JEDEC MO-178.
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
5. Support pin may differ or may not be present.

LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X

SOLDER MASK DETAILS

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:15X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.

SOLDER MASK DETAILS

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON . 005 INCH [0.125 MM] THICK STENCIL

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products

TI objects to and rejects any additional or different terms you may have proposed.

[^0]: (1) 300 -hour life test at $150^{\circ} \mathrm{C}$ demonstrated randomly distributed variation in the range of measurement limits-approximately $1 \mu \mathrm{~V}$.
 (2) Device requires one complete auto-zero cycle to return to V_{OS} accuracy.

