Kaimeite Electronic (HK) Co., Limited First choice One-Stop Mixed Distributor for World-Class manufacturer Email: info@kaimte.com Website: www.kaimte.com ## Click to view price, real time Inventory, Delivery & Lifecycle Information; # SE2595L-R **Skyworks Solutions** RF Front End 2.4GHz 5.0GHz Dual Band 802.11n Any questions, please feel free to contact us. info@kaimte.com #### **DATA SHEET** ## SE2595L: Dual-Band 802.11n Wireless LAN Front-End #### **Applications** - 802.11n, MIMO solutions - IEEE802.11b DSSS WLAN - IEEE802.11g OFDM WLAN - IEEE802.11a OFDM WLAN - Access points, PCMCIA, PC cards #### **Features** - One transmit and one receive path architecture for use as MIMO building block - All RF ports matched to 50 Ω - Integrated 2.4/5 GHz PA, 2.4/5 GHz LNA, TX filter, T/R switches and diplexers - Integrated power detector - 19 dBm O/P power, 802.11b, 11 Mbits, ACPR = 32 dBc - 18 dBm @ 3.0% EVM, 802.11g, 54 Mbits - 16 dBm @ 3.0% EVM, 802.11a, 54 Mbits - Single supply voltage: 3.3 V ±10% - Lead free, halogen free and RoHS compliant - Thin lead free plated package, 4 mm x 6 mm x 0.9 mm, MSL 3 #### **Description** The SE2595L is a complete 802.11n WLAN RF frontend module providing all the functionality of the power amplifiers, LNA, power detector, T/R switch, diplexers and associated matching. The SE2595L provides a complete 2.4 GHz and 5 GHz WLAN Multiple Input, Multiple Output (MIMO) RF solution from the output of the transceiver to the antennas in a compact form factor. The receive path is designed to maximize performance by providing both a low noise amplifier as well as a bypass state, for use when high power signals are being received. Designed for ease of use, all RF ports are matched to 50 Ω to simplify PCB layout and the interface to the transceiver RFIC. The SE2595L also includes a transmitter power detector for each band with 20 dB of dynamic range. The power ramp rise/fall time is less than 0.5 μ s. The device also provides band pass filters for both the a and b/g bands prior to the input of each 2.4 GHz and 5 GHz power amplifiers, respectively. Skyworks Green[™] products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*[™], document number SQ04–0074. Figure 1. SE2595L Functional Block Diagram Figure 2. SE2595L (Top View) **Table 1. SE2595L Pinout Discriptions** | Pin | Name | Description | |-----|-------|-------------------------------| | 1 | Ra | 5 GHz receive output | | 2 | VCC | Supply voltage, LNA | | 3 | GND | Ground | | 4 | Tg | 2.4 GHz transmit input | | 5 | Ta | 5 GHz transmit input | | 6 | GND | Ground | | 7 | GND | Ground | | 8 | GND | Ground | | 9 | Det | Power detector, 2.5 and 5 GHz | | 10 | ENa | 5 GHz PA enable | | 11 | ENg | 2.4 GHz PA enable | | 12 | VCC1 | Supply voltage, driver stage | | 13 | VCC2 | Supply voltage, power stage | | 14 | GND | Ground | | 15 | GND | Ground | | 16 | GND | Ground | | 17 | GND | Ground | | 18 | GND | Ground | | 19 | GND | Ground | | 20 | GND | Ground | | 21 | ANT | Antenna | | 22 | GND | Ground | | 23 | RX | Rx switch select | | 24 | TX | Tx switch select | | 25 | NU | Not used | | 26 | NU | Not used | | 27 | GND | Ground | | 28 | GND | Ground | | 29 | GND | Ground | | 30 | V_LNA | LNA enable | | 31 | Bsel | LNA band select | | 32 | Rg | 2.4 GHz receive output | #### **Electrical and Mechanical Specifications** The absolute maximum ratings of the SE2595L are provided in Table 2, recommended operating conditions are in Table 3, followed by the other electrical specifications. Table 2. SE2595L Absolute Maximum Ratings¹ | Symbol | Defunition | Min. | Max. | Unit | |---------|---|------|------|------| | Vcc | Supply voltage | -0.3 | 4.2 | V | | PU | ENg, ENa, V_LNA, Bsel | -0.3 | 4.0 | V | | TXrf | Ta, Tg, ANT terminated into 50 Ω match | | 10.0 | dBm | | Та | Operating temperature range | -40 | 85 | °C | | Tstg | Storage temperature range | -40 | 150 | °C | | ESD HBM | JEDEC JESD22-A114 all pins | 150 | | V | ¹ Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device. ESD Handling: Industry-standard ESD handling precautions must be adhered to at all times to avoid damage to this device. **Table 3. SE2595L Recommended Operating Conditions** | Symbol | Parameter | Min. | Тур. | Max. | Unit | |--------|---------------------|------|------|------|------| | Vcc | Supply voltage | 3.0 | 3.3 | 3.6 | V | | Та | Ambient temperature | -40 | 25 | 85 | °C | Table 4. SE2595L DC Electrical Characteristics¹ Conditions: VCC = 3.3 V, TA = 25 °C, as measured on Skyworks Solutions SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---------|--|---|-----|-----|-----|------| | Txlcc-G | Total 802.11g transmit supply current | P _{OUT} = 17 dBm, 54 Mbps OFDM
signal, 64QAM,
ENg = 3.3 V, ENa = 0 V, TX = 3.3 V, RX = 0 V | | 180 | | mA | | TxIcq-G | Quiescent current, 802.11g transmit supply current | No RF applied
ENg = 3.3 V, ENa = 0 V, TX = 3.3V, RX = 0 V | | 110 | | mA | | TxIcc-A | Total 802.11a transmit supply current | Роит = 17 dBm, 54 Mbps OFDM
signal, 64QAM, ENa = 3.3 V, ENg = 0 V,
TX = 3.3 V, RX = 0 V | | 230 | | mA | #### Table 4. SE2595L DC Electrical Characteristics¹ (Continued) Conditions: VCC = 3.3 V, TA = 25 °C, as measured on Skyworks Solutions SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---------|---|---|-----|-----|-----|------| | TxIcq-A | Quiescent current , 802.11a transmit supply current | No RF applied
ENa = 3.3V, ENg = 0V, TX = 3.3V, RX = 0V | | 155 | | mA | | RxIcc-G | Total 802.11b/g receive supply current | V_LNA = 3.3 V, Bsel = 3.3 V, RX = 3.3 V, TX = 0 V | | 8.5 | 15 | mA | | RxIcc-a | Total 802.11a receive supply current | V_LNA = 3.3 V, Bsel = 0 V, RX = 3.3 V, TX = 0 V | | 8.5 | 15 | mA | | lcc_off | Total supply current | No RF, ENg = ENa = 0 V, V_LNA = 0 V, TX = RX = 0 V | | 2 | 100 | μΑ | Note 1: Performance is guaranteed only under the conditions listed in this Table and is not guaranteed over the full operating or storage temperature ranges. Operation at elevated temperatures may reduce reliability of the device. Table 5. SE2595L Transmit Power Amplifier Logic Characteristics¹ Conditions: VCC = 3.3 V, TA = 25 °C, as measured on Skyworks Solutions SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted. | Symbol | Parameter | Min. | Тур. | Max. | Unit | |--------|---|------|------|------|------| | Venh | Logic High Voltage for ENg, ENa (Module On) | | 2.0 | Vcc | V | | Venl | Logic Low Voltage ENg, ENa (Module Off) | 0 | 0.5 | | V | | lenh | Input Current Logic High Voltage (ENg, ENa) | | 100 | 150 | μΑ | | Ienl | Input Current Logic Low Voltage (ENg, ENa) | | 0.2 | | μА | Note 1: Performance is guaranteed only under the conditions listed in this Table and is not guaranteed over the full operating or storage temperature ranges. Operation at elevated temperatures may reduce reliability of the device. #### **Table 6. SE2595L Receive LNA Logic Characteristics** Conditions: VCC = 3.3 V, TA = 25 °C, as measured on Skyworks Solutions SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted. | Symbol | Parameter | Min. | Тур. | Max. | Unit | |--------|--|------|------|------|------| | Vrenh | Logic High Voltage for V_LNA, Bsel (Module On) | | 3.2 | Vcc | V | | Vrenl | Logic Low for V_LNA, Bsel (Module Off) | -0.5 | 0.3 | | V | | Irenh | Input Current Logic High Voltage (V_LNA, Bsel) | | | 400 | μΑ | | Ireni | Input Current Logic Low Voltage (V_LNA, Bsel) | | 0 | | μΑ | | LNA Enak | ole Logic | LNA Function | | | |----------|-----------|--------------|-------------|--| | V_LNA | Bsel | 2.4 GHz LNA | 5 GHz LNA | Comment | | Vrenl | Vrenl | Bypass mode | Bypass mode | No gain in either path. This can be used for high input signal conditions. | | Vrenl | Vrenh | Bypass mode | Bypass mode | No gain in either path. This can be used for high input signal conditions. | | Vrenh | Vrenl | Off | On | Activates a-band LNA | | Vrenh | Vrenh | On | Off | Activates bg-band LNA | **Table 7. SE2595L RF Switch Characteristics** Conditions: VCC = 3.3 V, TA = 25 °C, as measured on Skyworks Solutions SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted. | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Unit | |----------|--|--|------|------|------|------| | Vctl_on | Control voltage (On state) | | 3.0 | | 3.6 | V | | Vctl_off | Control voltage (OFF state) | | 0.0 | | 0.2 | V | | SWon | Low loss switch control voltage | High state = VCTL_ON - VCTL_OFF | 2.8 | | Vcc | V | | SWoff | High loss switch control voltage | Low state = Vctl_off - Vctl_off | 0 | | 0.2 | V | | lctl_on | Switch control bias current (RF applied) | On pin (TX, RX) being driven
high. RF applied | | | 100 | μΑ | | lctl_on | Switch control bias current (no RF) | On pin (TX, RX) being driven
high. No RF | | | 30 | μΑ | | Cctl | Control input capacitance | | | | 100 | pF | | RF Swit | ch Logic | RF Switch Function | | | | |---------|----------|--------------------|--------------|--|--| | CTRL_T | CTRL_R | Tg, Ta – ANT | Rg, Ra – ANT | | | | SWon | SWoff | ON | OFF | | | | SWoff | SWon | OFF | ON | | | Table 8. SE2595L 2.4 GHz Transmit Characteristics Conditions: VCC = 3.3 V, ENg = TX = 3.3 V, V_LNA = ENa = RX = 0 V, TA = 25 °C, as measured on Skyworks Solutions SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted. | Symbol | Parameter | Condition | Min. | Тур. | Max. | Unit | |----------------------|---------------------------------------|---|---|------|-------------------|---------| | Fin | Frequency range | | 2400 | | 2485 | MHz | | P802.11g | Output power | 54 Mbps OFDM signal, 64QAM, EVM ≤ 3.0 % | 17 | 18 | | dBm | | P _{802.11b} | Output power | 11 Mbps CCK signal, BT = 0.45
ACPR(Adj) < -32
ACPR(Alt) < -52 | 19 | 20 | | dBm | | BEVM | Backed off EVM | 54 Mbps, OFDM signal, 64 QAM, P ≤ 12 dBm | | 1.5 | | % | | P _{1dB} | P1dB | | | 23 | | dBm | | S ₂₁ | Small signal gain | 2400 – 2485 MHz
960 – 1600 MHz
1600 – 1660 MHz
3260 – 3267 MHz | 23 | | 30
0
0
2 | dB | | Δ\$21 | Small signal gain variation over band | Over any 40 MHz band | | | 0.5 | dB | | | | Pout = 18 dBm, 1 Mbps, BPSK | | -50 | -45.2 | | | 2f,3f | Harmonics | Pout = 17 dBm, 54Mbps OFDM signal | | -55 | -48.2 | dBm | | NF | Noise figure | Pout < 20 dBm | | | 10 | dB | | tr | Rise time | 10 % to 90% of final output power level | | | 0.5 | μs | | tdr, tdf | Delay and rise/fall time | 50 % of VEN edge and 90/10 % of final output power level | | | 0.5 | μs | | S ₁₁ | Input return loss | | | 10 | | dB | | Spur | Spurious | Pout < 20 dBm, VSWR = 2:1 100 MHz to 10 GHz | | | -45 | dBm/MHz | | STAB | Stability | Pout ≤ 20dBm
Load VSWR = 10:1 | All non-harmonically related outputs less than -50 dBc/1MHz | | | | Table 9. SE2595L 2.4 GHz Receive Characteristics Conditions: VCC = V_LNA = Bsel = RX = 3.3V, ENg = ENa = TX = 0 V, TA = 25 °C, as measured on Skyworks Solutions SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted. | Symbol | Parameter | Condition | Min. | Тур. | Max. | Unit | |-----------------|----------------------------|---|------|-----------|----------------|------| | Fout | Frequency range | | 2400 | | 2500 | MHz | | S 21 | Receive gain, LNA enabled. | 2400 to 2485 MHz
800 to 1200 MHz
1200 to 1700 MHz
1700 to 1900 MHz
3200 to 6000 MHz | 11 | 13 | -10
3
10 | dB | | - | Receive gain, bypass mode | V_LNA = 0 V 2400 to 2485 MHz | | -7 | | dB | | Δ\$21 | Gain variation | 2400 to 2485 MHz, Over
any 40 MHz band | | | .5 | dB | | NF | Noise figure | | | 2.6
7 | 2.8 | dB | | IIP3 | Third order intercept | 2.45 GHz, 1 MHz offset | | 9 | | dBm | | ISOLRRX | Reverse isolation | V_LNA = 0V, RX = 0 V | | -23 | | dB | | INT | Interferer | With this input , IIP3 can only degrade by 1dB | -10 | | | dBm | | S ₁₁ | Input return loss | | 10 | 12 | | dB | | IP1dB | Input P1dB | V_LNA = 3.3 V V_LNA = 0 V | | -3.5
8 | | dBm | | Ten | Enable time | 10% to 90% of RX RF power, from time that V_LNA is at 50% | | | 500 | nsec | #### Table 10. SE2595L 5 GHz Transmit Characteristics Conditions: VCC = 3.3 V, ENa = TX = 3.3 V, V_LNA = ENg = RX = 0 V, TA = 25 °C, as measured on Skyworks Solutions SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted. | Symbol | Parameter | Condition | Min. | Тур. | Max. | Unit | |------------------|----------------------|--|------|------|------|------| | Fin | Frequency range | | 4900 | | 5850 | MHz | | P802.11a | Nominal output power | 54 Mbps OFDM signal, 64 QAM, EVM = 3.0 % | | 16 | | dBm | | BEVM | Backed off EVM | 54 Mbps, OFDM signal, 64 QAM, P ≤ 7 dBm | | 1.5 | | % | | P _{1dB} | P1DB | | | 21 | | dBm | Table 10. SE2595L 5 GHz Transmit Characteristics Conditions: VCC = 3.3 V, ENa = TX = 3.3 V, V_LNA = ENg = RX = 0 V, TA = 25 °C, as measured on Skyworks Solutions SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted. | | | | | | | I | |-----------------|---------------------------------------|---|---|---------------------------------|---------------------------|---------| | Symbol | Parameter | Condition | Min. | Тур. | Max. | Unit | | \$21 | Small signal gain | 4900 to 5850 MHz
960 to 3265 MHz
3265 to 3900 MHz
6900 to 7250 MHz
7250 to 7800 MHz
7800 to 8500 MHz | 22 | -30
-10
-10
-12
-10 | 31
10
8
6
-10 | dB | | | Small signal gain variation over 40 | 0 MHz channel | | 0.4 | | dB | | Δ\$21 | Small signal gain variation over ba | and | | 6 | | dB | | 2f,3f | Harmonics, 54 Mbps, 802.11a
signal | Pout = 16dBm 4900 to 5150 MHz
5150 to 5850 MHz | | -45
-50 | -42
-48 | dBm/MHz | | NF | Noise figure | Pout < 16 dBm 4900 to 5850 MHz | | | 10 | dB | | tr | Rise time | 10% to 90% of final output power level | | | 0.8 | μs | | tdr, tdf | Delay and rise/fall time | 50% of VEN edge and 90/10% of final output power level | | | 0.5 | μs | | S ₁₁ | Input return loss | | | 8 | | dB | | SPUR | Spurious | Pout < 16dBm, VSWR = 2:1, 100 to 24000 MHz | | | -45 | dBm/MHz | | STAB | Stability | Pouτ ≤ 17 dBm
Load VSWR = 10:1 | All non-harmonically related outputs less than -50 dBc/1MHz | | | | Table 11. SE2595L 5 GHz Receive Characteristics Conditions: VCC = V_LNA = RX = 3.3 V, Bsel = ENg = ENa = TX = 0 V, TA = 25 °C, as measured on Skyworks Solutions' SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted. | Symbol | Parameter | Condition | Min. | Тур. | Max. | Unit | |------------------|---------------------------|---|------|----------------------|------|------| | Fout | Frequency range | | 4900 | | 5850 | MHz | | S21 | Receive gain | 4900 to 5850 MHz
800 to 2500 MHz
2500 to 3900 MHz
6500 to 7800 MHz | | 12
-10
6
11 | -5 | dB | | | Receive gain, bypass mode | V_LNA = 0.0 V | | -7 | | dB | | ΔS ₂₁ | Gain variation | 4900 – 5850 MHz, Over
any 40 MHz band | | | 0.5 | dB | | NF | Noise figure | | | 2.8 | 3.2 | dB | Table 11. SE2595L 5 GHz Receive Characteristics Conditions: VCC = V_LNA = RX = 3.3 V, Bsel = ENg = ENa = TX = 0 V, TA = 25 °C, as measured on Skyworks Solutions' SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted. | | • | • | • | | | | |-----------------|-----------------------|---|------|----------|------|------| | Symbol | Parameter | Condition | Min. | Тур. | Max. | Unit | | IIP3 | Third order intercept | 5.45 GHz, 1 MHz offset | | -3 | | dBm | | ISOLRRX | Reverse isolation | V_LNA = 0V, RX = 0V | | 20 | | dB | | INT | Interferer | With this input IIP3 can only degrade by 1dB | -10 | | | dBm | | S ₁₁ | Return loss | | | 8 | | dB | | IP1dB | Input P1dB | V_LNA = 3.3 V V_LNA = 0 V | | -3
10 | | dBm | | T _{EN} | Enable time | 10% to 90% of RX RF power, from time that V_LNA is at 50% | | | 500 | nsec | Table 12. SE2595L 2.4 GHz Power Detector Characteristics Conditions: VCC = 3.3 V, ENg = TX = 3.3 V, V_LNA = RX = ENa = 0 V, TA = 25 °C, as measured on Skyworks Solutions SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted. | evaluation board (de-embedded to device), an unused ports terminated with 50 orinis, unless other wise noted. | | | | | | | |---|---|--|------|------|------|------| | Symbol | Parameter | Condition | Min. | Тур. | Max. | Unit | | Fout | Frequency range | | 2400 | | 2500 | MHz | | PDR | Power detect range, peak power | Measured at ANT | 0 | | 22 | dBm | | PDZload | DC load impedance | | | 2.7 | 3 | kΩ | | PDVp22 | Output voltage, Pout = 21 dBm | | | 0.86 | | V | | PDV _{p0} | Output voltage, Pout = 5 dBm | | | 0.35 | | V | | PDVpnoRF | Output voltage, Pout = No RF | | | 0.32 | | V | | LPF-3dB
(Note 2) | Power detect low pass filter -3 dB corner frequency | Load = high impedance Typ: $500 \text{ k}\Omega$ | 270 | 300 | 400 | V | Figure 3. SE2595L2.4 GHz Power Detector Characteristics Table 13. SE2595L 5 GHz Power Detector Characteristics | Conditions: VCC = 3.3 V , ENa = TX = 3.3 V , V_LNA = RX = ENg = 0 V , TA = 25 °C as measured on Skyworks Solutions SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted. | | | | | | | |--|--------------------------------|-----------------|------|------|------|------| | Symbol Parameter Condition | | | Min. | Тур. | Max. | Unit | | Fout | Frequency range | | 4900 | | 5850 | MHz | | PDR | Power detect range, peak power | Measured at ANT | 0 | | 20 | dBm | Table 13. SE2595L 5 GHz Power Detector Characteristics | Conditions: VCC = 3.3 V, ENa = TX = 3.3 V, V_LNA = RX = ENg = 0 V, TA = 25 °C as measured on Skyworks Solutions SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted. | | | | | | | |---|---|-----------------------------------|-----|------|-----|------| | Symbol | Parameter Condition Min. Typ. Max. Uni | | | | | Unit | | PDZload | DC load impedance | | | 2.7 | 3 | kΩ | | PDVp20 | Output voltage, Pout = 17 dBm | | | 0.80 | | V | | PDV _{p0} | Output voltage, Pout = 3 dBm | | | 0.34 | | V | | PDV _{pnoRF} | Output voltage, Pout = No RF | | | 0.32 | | V | | LPF-3dB
(Note 3) | Power detect low pass filter -3 dB corner frequency | Load = high impedance Typ: 500 kΩ | 270 | 300 | 400 | kHz | ### CW_Vdet vs Pout Figure 4. SE2595L 5 GHz Power Detector Characteristics Figure 5. SE2595L Package Outline Drawing Figure 6. SE2595L Recommended Land and Solder Pattern #### **Package and Handling Information** Since the device package is sensitive to moisture absorption, it is baked and vacuum packed before shipping. Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly. The SKY85500-11 is rated to Moisture Sensitivity Level 3 (MSL3) at 260 °C. It can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note, Solder Reflow Information, document number 200164. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format. Figure 7. SE2595L Typical Package Marking Figure 8. SE2595L Tape and Reel Information | Parameter | Value | |------------------|----------------| | Devices per reel | 3000 | | Reel diameter | 13 inches | | Tape width | 16 millimeters | Skyworks Solutions, Inc. • Phone [949] 231-3000 • sales@skyworksinc.com • www.skyworksinc.com 202433B • Skyworks Proprietary Information • Products and Product Information are Subject to Change without Notice ## **Ordering Information** | Part Number | Part Description | Evaluation Board Part Number | |-------------|---|------------------------------| | SE2595L | SE2595L: Dual-Band 802.11n Wireless LAN Front-End | | | SE2595L | Samples | SE2595L-EK1 | | SE2595L-R | 32 pin QFN, tape and reel | | ### **Document Change History** | Revision | Date | Notes | |----------|------------------|--| | 1.0 | June 29, 2008 | Create | | 1.1 | March 11, 2009 | Update Gain in both bands Updated detector characteristics Updated packing method to Tape & Reel Added package outline drawing and recommended land pattern Updated input return loss. Updated RX IIP3 | | 1.2 | April 6, 2009 | Updated LNA characteristics.
Corrected product and terminal finish marking on Branding information | | 1.3 | April 29, 2009 | Updated LNA Logic Characteristics (IRENH) to 400uA | | 1.4 | May 1, 2009 | Updated detector characteristics | | 1.5 | July 30, 2009 | Updated 5GHz Gain Characteristics | | 1.6 | Aug 28, 2009 | Updated Tape and Reel drawings. | | 1.7 | Jan 11, 2010 | Updated ICC_OFF specification. | | 1.8 | Jan 8, 2011 | Updated MSL rating to MSL 1 | | 1.9 | Apr 9, 2011 | Updated recommended operating conditions to industrial temperature range | | 2.0 | Mar 28, 2012 | Updated with Skyworks logo and disclaimer statement | | В | January 16, 2023 | Revised MSL rating. Updated to current format, disclaimer statement, and revision letter. | Copyright © 2012, 2023, Skyworks Solutions, Inc. All Rights Reserved. Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes. No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale. THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale. Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters. Skyworks, the Skyworks symbol, Sky5®, SkyOne®, SkyBlue™, Skyworks Green™, ClockBuilder®, DSPLL®, ISOmodem®, ProSLIC®, SiPHY®, and RFeIC® are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference. ## **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: Skyworks: SE2595L-R